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ТОЧКА ЗРЕНИЯ

По данным мировой статистики в 1950 г. количество
людей в возрасте старше 60 лет составляло около 8%
всего населения земли[1]. Если процесс старения не за-
медлится, то к 2050 г. мы будем иметь около 2 млрд жи-
телей пенсионного возраста, что составит около 21%
населения земного шара [1]. В связи с этим обстоя-
тельством ученых все больше интересуют процессы, про-
исходящие в организме человека с возрастом. Многие
исследования направлены на поиск факторов, уско-
ряющих процессы старения и способствующих разви-
тию возраст-ассоциированных заболеваний, и спосо-
бов минимизации их воздействия. В России, как и в
большинстве других стран, ведущее место среди при-
чин смертности по-прежнему занимают болезни системы
кровообращения. На их долю приходится около 56,5%
всех смертей [2]. Главными причинами смерти среди
заболеваний сердечно-сосудистой системы остается
ишемическая болезнь сердца (ИБС), в частности, ин-
фаркт миокарда, цереброваскулярные болезни и ги-
пертоническая болезнь [2].

Признаки сосудистого старения
Многие факторы, которые участвуют в развитии кли-

нических проявлений заболеваний сердечно-сосуди-
стой системы (ССЗ), лежат и в основе возраст-ассоци-

рованных структурных и функциональных изменений
артериальной стенки. Структурные изменения арте-
риальной стенки, приводящие к повышению ее же-
сткости, представлены: 1) миграцией гладкомышечных
клеток и их пролиферацией в субэндотелиальном про-
странстве; 2) уменьшением количества гладкомышеч-
ных клеток из-за апоптоза и их гипертрофией; 3) де-
градацией эластина и накоплением коллагена в медии
[3,4]. Функциональные изменения сосудистой стенки
заключаются в снижении растяжимости сосудистой
стенки и эндотелиальной дисфункции. Эндотелиальная
дисфункция характеризуется снижением способности
к ацетилхолин-индуцированной NO-зависимой вазо-
дилатации. В настоящее время жесткость сосудистой
стенки называют маркером старения сосудов. По со-
временным немногочисленным данным в развитие воз-
растных изменений сосудистой стенки значительный
вклад вносит активация ренин-ангиотензин-альдо-
стероновой системы (РААС) и процессы репликативного
клеточного старения [5].

Активация РААС – источник 
хронического воспаления 
и окислительного стресса

Основными механизмами старения организма яв-
ляются хроническое воспаление и окислительный
стресс. Эти процессы находятся в тесной взаимосвязи.
Известно, что окислительный стресс характеризуется
повышенной продукцией свободных радикалов, на-
рушением окислительно-восстановительного балан-
са, что ведет к повреждению клетки и даже ее гибели.
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большей части супероксиданиона (основного сво-
бодного радикала) в сердечно-сосудистой ткани яв-
ляется NAD (P) H-оксидаза. Ее активация способству-
ет развитию эндотелиальной дисфункции, а также ре-
моделированию сердца и повреждению почек [6,7].
NAD (P) H-оксидаза состоит из нескольких мембран-
ных и цитозольных субъединиц, которые мобили-
зуются и активируются различными агонистами, в
том числе ангиотензин II (АТII) и альдостероном [7,8].
В нормально функционирующем организме активные
формы кислорода необходимы для жизни клетки
[9,10], а поддержание их концентрации на физиоло-
гическом уровне контролируется системой антиокси-
дантной защиты. Считается, что основными причина-
ми окислительного стресса являются повышение про-
дукции свободных радикалов и снижение антиокса-
дантной защиты [11]. Избыток свободных радикалов
в митохондриях приводит к их повреждению и запуску
механизма апоптоза.

Долгое время РААС представлялась нам классиче-
ски как система, предназначенная для контроля водного
и солевого гомеостаза в теле человека [12]. Недавние
исследования показали роль РААС как одного из глав-
ных источников хронического воспаления и окисли-
тельного стресса. Принцип функционирования РААС
представлен на рис. 1.

Основными эффекторами РААС являются АТII и аль-
достерон. АТII является октапептидом, который об-
разуется из субстрата ангиотензиногена путем после-
довательного воздействия ферментов: ренина, ан-
гиотензинпревращающего фермента (АПФ). В част-
ности, ренин расщепляет ангиотензиноген, образуя ан-
гиотензин I, который, в свою очередь, под воздей-
ствием АПФ преобразуется в АТII. Субстрат – ангио-
тензиноген образуется в печени, в то время как ренин
– в почках, а АТII – в сосудистой стенке [13]. Уровень
АТII может регулироваться ферментом химазой, экс-
прессирующимся в сердце в тучных, эндотелиальных
и мезенхимальных интерстициальных клетках [14], в
почках, в мезангиальных и гладкомышечных клетках
сосудов [15]. Опосредованный химазой путь обра-
зования АТ II преимущественно работает в условиях
болезни [16]. 

В клубочковой зоне надпочечников под влиянием
ATII образуется стероидный гормон – альдостерон.
Альдостерон, воздействуя на внутриклеточные мине-
ралокортикоидные рецепторы в почках, приводит к уси-
лению реабсорбции ионов натрия и выведению ионов
калия и водорода [17]. Альдостерон также обладает про-
фибротическими, провоспалительными, проокисли-
тельными эффектами [18,19]. Было обнаружено, что
альдостерон, независимо от ATII, способствует активации

ангиотензиновых рецепторов 1 типа
(ATR1) и усилению окислительного
стресса через воздействие на фермен-
тативный комплекс NAD (P) – H-окси-
дазу [19,20]. В дополнение к повреж-
дающему действию АТII на эндотелий
альдостерон самостоятельно может спо-
собствовать нарушению эндотелий-за-
висимой вазодилатации как прямо, так
и косвенно, за счет усиления окисли-
тельного стресса и снижения биодо-
ступности оксида азота [21]. Избыток
альдостерона способствует ремодели-
рованию сердечно-сосудистой ткани за
счет усиления синтеза коллагена, что ве-
дет к повышению жесткости сосуди-
стой стенки, гипертрофии миокарда
левого желудочка и фиброзу почек [20].
На экспериментальных моделях грызу-
нов с избытком АТII и альдостерона
было продемонстрировано, что бло-
када минералокортикоидных рецепто-
ров ослабляет окислительный стресс в
тканях сердца и почек за счет сокраще-
ния NAD (P) H-оксидазы и приводит к
уменьшению выраженности интерсти-
циального фиброза, ремоделирования
тканей и признаков гипертрофии [22].

РААС и репликативное клеточное старение

Рисунок 1. Классическая схема активации РААС
АТI – ангиотензин I; АТII – ангиотензин II; 
АПФ – ангиотензин-превращающий фермент
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Тканевая РААС
Одним из наиболее значимых достижений в из-

учении РААС в последние два десятилетия стало от-
крытие местной или тканевой РААС. Тканевая РААС ха-
рактеризуется наличием компонентов РААС в сердце
[23], почках [24], мозге [25], поджелудочной железе
[26], репродуктивных органах [27], лимфатической [28]
и жировой ткани [29]. Тканевая РААС может оказывать
различное действие в каждом органе, как самостоя-
тельно (надпочечники и головной мозг), так и в тесном
сотрудничестве с циркулирующей РААС (сердце, поч-
ки) [30]. Наиболее изучена активация местной РААС
в жировой ткани у пациентов с метаболическим син-
дромом. Недавние исследования показывают, что у лю-
дей с висцеральным ожирением отмечаются более вы-
сокие уровни ангиотензиногена, альдостерона, а так-
же повышенная экспрессия генов рецепторов к АТII. Это
связано с аутокринно-паракринной ролью жировой тка-
ни, способной к выработке альдостерон-стимули-
рующего фактора [31,32]. Изучение тканевой РААС поз-
волило обнаружить негемодинамические эффекты
АТII, в том числе провоспалительные, пролифератив-
ные, профибротические. Выявлено, что ATII стимули-
рует выработку активных форм кислорода, которые вы-
зывают дисфункцию митохондрий и повреждают клет-
ки [33,34]. АТII, стимулируя рецепторы ATR1, могут ак-
тивировать NAD (P) H-оксидазу, приводя к продукции
активных форм кислорода, т.е. развитию окисли-
тельного стресса [35]. В почечной, сердечной, сосу-
дистой тканях АТII индуцирует воспалительную реак-
цию путем стимуляции экспрессии провоспалительных
хемокинов, ответственных за тканевое накопление
иммунокомпетентных клеток [36]. 

Взаимосвязь РААС и репликативного кле-
точного старения

Активация хронического воспаления и окисли-
тельного стресса под влиянием РААС может оказывать
воздействие и на процессы репликативного клеточно-
го старения, которые признаны одними из важнейших
причин сосудистого старения [37]. Важнейшим меха-
низмом репликативого клеточного старения является
укорочение длины теломер. Теломеры – это концевые
участки линейной хромосомной ДНК, состоящие из мно-
гократно повторяющихся нуклеотидных последова-
тельностей ТТАGGG. Защищая линейные концы хро-
мосом от деградации и слияния, они поддерживают ста-
бильность генома. Каждый раунд репликации хромо-
сом приводит к укорочению теломер. Это происходит
потому, что аппарат репликации клетки не в состоянии
обеспечить полную репликацию концов хромосом
[38]. После того, как длина теломерной ДНК становится
угрожающе низкой, наступает старение клетки, т.е., ее
неспособность к дальнейшему делению и репарации

повреждений (при сохранении метаболической ак-
тивности). По мере увеличения в тканях с возрастом по-
пуляции старых (сенесцентных) клеток функциональ-
ная способность этих тканей снижается и начинает фор-
мироваться фенотип старения. Поддерживает длину те-
ломер фермент теломераза, которая достраивает те-
ломерные повторы ДНК. Теломераза представляет со-
бой рибонуклеопротеидный комплекс и относится к
классу РНК-зависимых ДНК-полимераз или обратных
транскриптаз. Она включает в себя теломеразную об-
ратную транскриптазу (TERT) и теломеразную РНК
(TERС), используемую для синтеза теломерной ДНК в
качестве матрицы [39,40]. Высокая теломеразная ак-
тивность наблюдается в эмбриональных, стволовых и
раковых клетках, половых клетках человека в течение
всей его жизни. В клетках, дифференцировка которых
завершена, активность теломеразы снижается, а тело-
меры начинают укорачиваться, т.е. с каждым делени-
ем такие клетки приближаются к состоянию старения.
Эта картина характерна для большинства клеток эука-
риот. Однако и здесь есть редкие, но важные исклю-
чения. Теломеразная активность обнаруживается в та-
ких «смертных» клетках, как макрофаги и лейкоциты. 

Сегодня именно длина теломер и активность тело-
меразы законно претендуют на роль маркеров биоло-
гического старения сердечно-сосудистой системы.
Кроме того, длину теломер признали независимым пре-
диктором риска развития ССЗ [41-43]. Люди с длинными
теломерами имеют значительно более низкий риск раз-
вития инфаркта миокарда, инсульта, кардиоваскуляр-
ных заболеваний, чем люди с нормальными и корот-
кими теломерами [44]. Факторы риска ССЗ, такие как
курение, ожирение, ассоциированы с укорочением дли-
ны теломер [45]. Длина теломер как маркер риска ССЗ
имеет целый ряд преимуществ, поскольку она отражает
как врожденную предрасположенность к ускоренному
клеточному старению (длина теломер – наследствен-
ная черта), так и накопившийся в течение жизни груз
окислительного стресса [46]. 

Известно, что хроническое воспаление и окисли-
тельный стресс являются общей патологической плат-
формой большинства ССЗ и возрастных изменений со-
судов [47]. Возможно, связующим звеном является
именно ускоренное укорочение теломер. Воспаление
связано с усиленной пролиферацией клеток, приво-
дящей к быстрому укорочению теломер, а окисли-
тельный стресс вызывает одноцепочечные разрывы ДНК
в теломерных повторах, что способствует ускоренному
укорочению теломер при повторных делениях. В ряде
исследований продемонстрирована четкая обратная
связь между выраженностью системного воспаления,
окислительного стресса и длиной теломер у пациентов
с субклиническими или клиническими сердечно-со-
судистыми заболеваниями [48,41]. 

РААС и репликативное клеточное старение
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В клинической практике длина теломер определяется
именно в лейкоцитах [49,50], но, по существу, она от-
ражает длину теломер в стволовых прогениторных
клетках. Стволовые и прогениторные клетки, участвуя
в репарации повреждения и процессах дифферен-
циации тканей, играют важную роль в поддержании тка-
невого гомеостаза, в том числе – в стенке сосуда [51].
Активация РААС, усиливая хроническое воспаление и
окислительный стресс, может приводить к укорочению
теломер как в лейкоцитах, так и в стволовых клетках [52].
Из стволовых прогениторных клеток происходят эндо-
телиальные прогениторные клетки (ЭПК). Именно
ЭПК обеспечивают восстановление поврежденных
или старых сосудов за счет эндогенного механизма ре-
генерации. При укорочении длины теломер в ЭПК
снижается количество ЭПК и их функциональная ак-
тивность. В результате страдает неоангиогенез и репа-
рация эндотелия, что приводит к нарушению целостности
эндотелия, развитию атеросклероза и атеротромбоза.
Возможно, этот механизм является одним из ключевых
в реализации влияния РААС на риск развития ССЗ. 

Новые пути положительного влияния 
на репликативное клеточное старение 

Еще одной насущной проблемой представляется из-
учение возможностей влияния на процессы клеточно-
го старения, перспектив использования регуляции кле-
точного старения в терапии возраст-ассоциирован-
ных заболеваний. Наибольший интерес в этой связи
представляет регуляция активности теломеразы, кото-
рая обладает способностью не только поддерживать дли-
ну теломер, но и оказывать благотворное антиокси-
дантное и антиапоптическое действие, не связанное с
регуляцией длины теломер. Теломераза находится в ядре
и цитоплазме в активной форме. Однако последние на-
блюдения показывают, что теломераза обнаруживает-
ся и в митохондриях. Эта локализация, по мнению уче-
ных, может оказывать протективное действие как на ми-
тохондрии, так и на клетку в целом в условиях стресса.
Теломеразная обратная транскриптаза (TERT), находя-
щаяся на митохондриях, в своей последовательности
имеет N-концевой домен [53]. Благодаря этой после-
довательности, TERT способна перемещаться из ядра кле-
ток в митохондрии при окислительном стрессе и свя-
зываться с митохондриальной ДНК. Наблюдения в
некоторых лабораториях показывают, что митохонд-
риальная теломераза уменьшает выработку активных
форм кислорода и защищает митохондриальную ДНК
от повреждения [54,55]. 

Нельзя исключить, что повышение активности те-
ломеразы может быть перспективным направлением
предупреждения возраст-ассоциированных изменений
сосудов. Возможно, именно изменением активности те-
ломеразы можно объяснить ослабление влияния ко-

ротких теломер на развитие и прогноз ИБС под влия-
нием статинов и регулярной физической нагрузки
[56]. Подтверждением возможности модулировать
активность теломеразы могут служить работы D. Ornish
с соавт., который показал положительное влияние фи-
зической активности и диеты с низким содержанием
жира на активность теломеразы [57]. Spyridopoulos I. c
совт. также продемонстрировали, что статины замед-
ляют репликативное старение клеток за счет повыше-
ния активности теломеразы вследствие подавления в
эндотелиальных клетках ядерного экспорта ТЕRT [58]. 

Известно, что ингибирование РААС оказывает пря-
мое кардиопротективное и вазопротективное дей-
ствие, обеспечивая антиатеросклеротический эффект
и улучшая эндотелиальную функцию [59]. Следует от-
метить очевидное преимущество в этом отношении ин-
гибиторов АПФ, в первую очередь периндоприла, по
сравнению с блокаторами рецепторов к ангиотензину
(БРА) [60,61]. Периндоприл подтвердил свое благо-
творное влияние и на эндотелиальную функцию ко-
ронарных артерий у пациентов с АГ [62]. На сего-
дняшний день периндоприл является единственных пре-
паратом, доказавшим свою способность улучшать эн-
дотелиальную функцию в различных отделах сосуди-
стой системы [63,64]. Это может быть связано с тем, что
периндоприл по сравнению с другими ингибиторами
АПФ обладает самой выраженной способностью к со-
судистой абсорбции [65], наиболее выраженным ан-
тиапоптотическим эффектом [66], является наиболее
мощным блокатором деградации брадикинина [67].

Возможно, ключевую роль в улучшении функции эн-
дотелия играет увеличение количества и функцио-
нальных свойств ЭПК, которое было продемонстри-
ровано на фоне приема периндоприла [68]. 

Явные положительные результаты воздействия ин-
гибиторов АПФ на возраст-ассоциированные изменения
состояние сосудистой стенки могут послужить пред-
посылками к изучению их влияния на процессы ре-
пликативного клеточного старения, в первую очередь
на активность теломеразы.

Заключение 
Подводя итог, хочется надеяться, что дальнейшее из-

учение роли хронического воспаления и окислительного
стресса в укорочении теломер, вклада РААС в эти про-
цессы послужит созданию новых патофизиологических
моделей, в результате чего будут разработаны меры
своевременной и эффективной профилактики ССЗ, в
том числе и с использованием ингибиторов АПФ в ка-
честве геропротекторов.

Конфликт интересов. Все авторы сообщили об от-
сутствии потенциального конфликта интересов, тре-
бующего раскрытия в данной статье.
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