Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Markers of Endothelial Dysfunction: E-selectin, Endothelin-1 and von Willebrand Factor in Patients with Coronary Heart Disease, Including in Combination with Type 2 Diabetes Mellitus

https://doi.org/10.20996/1819-6446-2019-15-6-892-899

Abstract

The prevalence of coronary heart disease (CHD) and type 2 diabetes mellitus (type 2 diabetes) in Russia and in the world continues to increase. Despite the prevention and optimization of therapy, CHD retains its leadership among all causes of death, and the mortality rate from type 2 diabetes and its complications gradually increases too. To improve the treatment of the above mentioned diseases, it is necessary to clarify the pathogenetic mechanisms of their development. The formation of endothelial dysfunction, characterized by an increase in the level of cell adhesion molecules and vasoconstriction, is a common link characteristic for the course and progression of CHD and type 2 diabetes. This article presents an analysis of preand clinical studies on the role of endothelial dysfunction markers: cell adhesion molecules (E-selectin), vasoconstriction (endothelin-1) and von Willebrand factor in patients with CHD, including those with type 2 diabetes mellitus.

About the Authors

A. V. Zhito
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Alexey V. Zhito – MD, Postgraduate Student, Chair of Hospital Therapy №1

Trubetskaya ul. 8-2, Moscow, 119991



A. O. Iusupova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Alfia O. Iusupova – MD, PhD, Associate Professor, Chair of Hospital Therapy №1

Trubetskaya ul. 8-2, Moscow, 119991



E. V. Privalova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Elena V. Privalova – MD, PhD, Professor, Chair of Hospital Therapy №1

Trubetskaya ul. 8-2, Moscow, 119991



N. V. Khabarova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Natalia V. Khabarova – MD, PhD, Assistant, Chair of Hospital Therapy №1

Trubetskaya ul. 8-2, Moscow, 119991



Yu. N. Belenkov
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Yurii N. Belenkov – MD, PhD, Professor, Academician of the Russian Academy of Sciences, Head of Chair of Hospital Therapy №1

Trubetskaya ul. 8-2, Moscow, 119991



References

1. Rosamond W., Flegal K., Furie K., et al. Heart disease and stroke statistics-2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117:e25-146. DOI:10.1161/CIRCULATIONAHA.107.187998.

2. Nichols M., Townsend N., Scarborough P., Rayner M. Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J.2014;35(42):2950-9. DOI:10.1093/eurheartj/ehu299.

3. Benjamin E.J., Virani S.S., Callaway C.W., et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation. 2018;137:e67-e492. DOI:10.1161/CIR.0000000000000558.

4. Heidenreich P.A., Trogdon J.G., Khavjou O.A., et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123(8):933-44. DOI:10.1161/CIR.0b013e31820a55f5.

5. Morbidity of Russian population 2017. Statistical materials. Part I. Moscow: CNIIOIZ; 2018 [cited by Oct 20, 2019]. Available from: https://www.rosminzdrav.ru/ministry/61/22/stranitsa-979/statisticheskiei-informatsionnye-materialy/statisticheskiy-sbornik-2017-god. (In Russ.)

6. Paneni F., Beckman J.A., Creager M.A., et al. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part I. Eur Heart J. 2013;34:2436-43. DOI:10.1093/eurheartj/eht149.

7. Norhammar A., Tenerz A., Nilsson G., et al. Glucose metabolism in patients with acute myocardial infarction and no previous diagnosis of diabetes mellitus: A prospective study. Lancet. 2002;359:21404. DOI:10.1016/S0140-6736(02)09089-X.

8. Bartnik M., Ryden L., Ferrari R., et al. The prevalence of abnormal glucose regulation in patients with coronary artery disease across Europe. The Euro Heart Survey on diabetes and the heart. Eur Heart J. 2004;25:1880-90. DOI:10.1016/j.ehj.2004.07.027.

9. Hage C., Lundman P., Ryden L., et al. Fasting glucose, HbA1c, or oral glucose tolerance testing for the detection of glucose abnormalities in patients with acute coronary syndromes. Eur J Prev Cardiol. 2013;20:549-54. DOI:10.1177/2047487312444371.

10. Bjarnason T.A., Kristinsdottir L.B., Oskarsdottir E.S., et al. Editor’s Choice-Diagnosis of type 2 diabetes and prediabetes among patients with acute coronary syndromes. Eur Heart J Acute Cardiovasc Care. 2017;6(8):744-9. DOI:10.1177/2048872616669060.

11. Dedov I.I., Shestakova M.V., Vikulova O. K. et al. Epidemiology of diabetes mellitus in Russian Federation: clinical and statistical report according to the federal diabetes registry. Diabetes Mellitus. 2017;20(1):13-41 (In Russ.)

12. Diabetes Atlas. 7th ed. International Diabetes Federation. Brussels, Belgium: International Diabetes Federation; 2015

13. Thomas R., Einarson D., Annabel A., Craig L. Economic Burden of Cardiovascular Disease in Type 2 Diabetes: A Systematic review, Value in Health. Eur Heart J Acute Cardiovasc Care. 2017;6(8):7449. DOI:10.1016/j.jval.2017.12.019.

14. Murohara T., Buerke M., Lefer A. Polymorphonuclear leucocyte-induced vasoconstriction and endothelial dysfunction. Role of selectins. Arterioscler Thromb. 1994;14:1509-19.

15. De Mayer G., Herman A. Vascular endothelial dysfunction. Prog Cardiovasc Dis. 1997;49:325-342. DOI:10.1016/s0033-0620(97)80031-x.

16. Calder P.C., Ahluwalia N., Albers R., et al. A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br J Nutr. 2013;109(Suppl 1):S1e34. DOI:10.1017/S0007114512005119.

17. Blankenberg S., Barbaux S., Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis. 2003;170:191-203. DOI:10.1016/s0021-9150(03)00097-2.

18. Tretjakovs P., Jurka A., Bormane I., et al. Circulating adhesion molecules, matrix metalloproteinase9, plasminogen activator inhibitor-1, and myeloperoxidase in coronary artery disease patients with stable and unstable angina. Clin Chim Acta. 2012;413(1-2):25-9. DOI:10.1016/j.cca.2011.10.009

19. Senen K., Ileri M., Alper A., et al. Increased Levels of Soluble Adhesion molecules E-Selectin and PSelectin in patients with Cardiac Syndrome X. Angiology; 2005;56:273-7. DOI:10.1177/000331970505600306.

20. Husam B., Paul S. Jeffrey G., et al. Soluble VCAM-1 and E-Selectin, but not ICAM-1 Discriminate Endothelial Injury in Patients with Documented Coronary Artery Disease Cardiology. 2000;93:7-10. DOI:10.1159/000006995.

21. Natasa-Bogavac Stanojevic N., Ivanivic Z., Djurovic S., et al. Lack of Association Between Low HDLcholesterol and Elevated Circulating Cellular Adhesion Molecules in normolipidemic CAD Patients and Healthy Subjects. Int Heart J. 2005;46(4):593-600. DOI:10.1536/ihj.46.593.

22. Hajilooi M., Sanati A., Ahmadieh A., et al. Circulating ICAM-1, VCAM-1, E-Selectin, P-Selectin, and TNFRII in Patients with Coronary Artery Disease. Immunological Investigations. 2004;33(3):26375. DOI:10.1081/IMM-120037275.

23. Porsch-Oezc M.,Ueruemez M., Kunz D., et al. Evaluation of Serum Levels of solubilized Adhesion Molecules and Cytokine Receptors in Coronary Heart Disease. Journal of the American College of Cardiology.1999; 34:7. DOI:10.1016/S0735-1097(99)00473-8.

24. Stanojevic N., Djurovic S., Jelic-Ivanovic Z., et al. Circulating Transforming Growth Factor-1, Lipoprotein( a) and Cellular Adhesion Molecules in Angiographically Assessed Coronary Artery Disease. Clin Chem Lab Med. 2003;41(7):893-8. DOI:10.1515/CCLM.2003.135.

25. Nasuno A., Matsubara T., Hori T., et al. Levels of Soluble E-selectin and ICAM-1in the Coronary Circulation of Patients with Stable Coronary Artery Disease Association with the Severity of Coronary Atherosclerosis. Jpn Heart J. 2002;43(2):93-101. DOI:10.1536/jhj.43.93.

26. Galvani M., Ferrini D., Ottani F., et al. Soluble E-selectin is not a marker of unstable coronary plaque in serum of patients with ischemic heart disease. J Thromb Thrombolysis. 2000;9:53-60.

27. Oishi Y., Wakatsuki T., Nishikado A., et al. Circulating adhesion molecules and severity of coronary atherosclerosis. Coronary Artery Disease. 2000;11:77-81.

28. Jang Y., Lincoff A.M., Plow E.F., Topol E.J. Cell adhesion molecules in coronary artery disease. J Am Coll Cardiol. 1994;24:1591-601. DOI:10.1016/0735-1097(94)90162-7.

29. Alber H.F., Frick M., Sussenbacher A., et al. Effect of atorvastatin on peripheral endothelial function and systemic inflammatory markers in patients with stable coronary artery disease. Wien med Wochenschr. 2007;157(3-4):73-8. DOI:10.1007/s10354-007-0377-y.

30. Albertini J.P., Valensi P., Lormeau B., et al. Soluble L-Selectin Level Is a Marker for Coronary artery Disease in Type 2 Diabetic Patients. Diabetes Care. 1999;22(12):2044-8. DOI:10.2337/diacare.22.12.2044.

31. Albertini J.P., Valensi P., Lormeau B., et al. Elevated Concentrations of Soluble E-Selectin and Vascular Cell Adhesion Molecule-1 in NIPPM. Diabetes Care. 1998;21(6):1008-13. DOI:10.2337/diacare.21.6.1008.

32. Kruszelnicka O., Chyrchel B., Golay A., et al. Differential associations of circulating asymmetric dimethyl arginine and cell adhesion molecules with metformin use in patients with type 2 diabetes mellitus and stable coronary artery disease. Amino Acids. 2015;47(9):1951-9. DOI:10.1007/s00726-015-1976-3.

33. Kumpatla S., Karuppiah K., Immaneni S., et al. Comparison of plasma adiponectin & certain inflammatory markers in angiographically proven coronary artery disease patients with & without diabetes A study from India. Indian J Med Res. 2014;139:841-50.

34. Natarajan A., Marshall S.M., Kesteven P.J., et al. Impact of biomarkers for endothelial dysfunction and procoagulant state on 10-year cardiovascular risk in Type 2 diabetes. Diabet Med. 2011;28(10):1201-5. DOI:10.1111/j.1464-5491.2011.03311.

35. Kato Y., Iwata A., Futami M., et al. Impact of von Willebrand factor on coronary plaque burden in coronary artery disease patients treated with statins. Medicine. 2018;97(17):e0589. DOI:10.1097/MD.0000000000010589.

36. Ruggeri Z.M. The role of von Willebrand factor in thrombus formation. Thromb Res. 2007;120(suppl 1):S5-9. DOI:10.1097/MD.0000000000010589.

37. Meigs J.B., O'Donnell C.J., Tofler G.H., et al. Hemostatic markers of endothelial dysfunction and risk of incident type 2 diabetes: the Framingham Offspring Study. Diabetes. 2006;55:530-537. DOI:10.2337/diabetes.55.02.06.db05-1041.

38. Jolanta M., Siller-Matula A., Irene M., et al. Interdependence between osteoprotegerin and active von Willebrand factor in long-term cardiovascular mortality prediction in patients undergoing percutaneous coronary intervention. Thrombosis and Haemostasis. 2017;17(9):1730-8. DOI:10.1160/TH17-02-0087.

39. Murata M., Adachi H. Glucose fluctuation and the resultant endothelial injury are correlated with pancreatic cell dysfunction in patients with coronary artery disease. Diabetes Research and Clinical Practice. 2017;131:107-15. DOI:10.1016/j.diabres.2017.07.007.

40. Akyol O., Akyol S., Chen C. Update on ADAMTS13 and VWF in cardiac and hematological disorders. Clin Chim Acta. 2016 Dec 1;463:109-18. DOI:10.1016/j.cca.2016.10.017.

41. Miura M., Kaikita K., Matsukawa M., et al. Prognostic value of plasma von Willebrand factor-cleaving protease(ADAMTS13) antigen levels in patients with coronary artery disease. Blood Coagulation, Fibrinolysis and Cellular Haemostasis. 2010;103(3):623-9. DOI:10.1160/TH09-08-0568.

42. Danesh J., Wheeler J.G., Hirschfield G.M., et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004;350:1387-97. DOI:10.1056/NEJMoa032804.

43. Sonneveld M., Kavousi M., Ikram M.A., et al. Low ADAMTS-13 activity and the risk of coronary heart disease – a prospective cohort study: the Rotterdam Study. Cardiovascular Medicine. 2016;14(11):2114-20. DOI:10.1111/jth.13479.

44. Gragnano F., Sperlongano S., Goliaet E., al. The Role of von Willebrand Factor in Vascular Inflammation: From Pathogenesis to Targeted Therapy. Mediators of Inflammation. 2017;. DOI :10.1155/2017/5620314.

45. Brott D., Katein A., Thomas H., et al. Evaluation of von Willebrand factor and von Willebrand factor propeptide in models of vascular endothelial cell activation, perturbation, and/or injury. Toxicologic Pathology. 2014;42(4):672-83. DOI:10.1177/0192623313518664.

46. Lip G.Y., Blann A. von Willebrand factor: a marker of endothelial dysfunction in vascular disorders? Cardiovasc Res. 1997;34:255-65. DOI:10.1016/s0008-6363(97)00039-4.

47. Jin H., Chen Y., Wang В., et al. Association between brain-derived neurotrophic factor and von Willebrand factor levels in patients with stable coronary artery disease. BMC Cardiovascular Disorders. 2018; DOI:10.1186/s12872-018-0762-z.

48. Cao Y., Yang K., Zhang Z., et al. Correlation between plasma asymmetric dimethyl arginine and different types of coronary heart disease. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2010;35(4):3016. DOI:10.3969/j.issn.1672-7347.2010.04.004.

49. Blann A.D., Amiral J., McCollum C.N. Circulating endothelial cell, leucocyte adhesion molecules in ischaemic heart disease. Br J Haematol. 1996;95(2):263-5. DOI:10.1046/j.13652141.1996.d01-1921.x.

50. Murata M., Adachi H. Glucose fluctuation and the resultant endothelial injury are correlated with pancreatic βcell dysfunction in patients with coronary artery disease. Diabetes Research and Clinical Practice. 2017;131:107-15. DOI:10.1016/j.diabres.2017.07.007.

51. Li Q., Zhang Z., Duet R., al. Association analysis between endothelial function related factors and coronary artery stenosis degree in coronary heart disease patients with type 2 diabetes mellitus. J Pediatr Endocr Met. 2012; 25(7-8):711-6. DOI:10.1515/jpem-2012-0159.

52. Meyers K.E., Sethna C. Endothelin antagonists in hypertension and kidney disease. Pediat Nephrol. 2013;28:711-20. DOI:10.1007/s00467-012-2316-4.

53. Rodriguez-Pascual F., Busnadiego O., Lagares D., Lamas S. Role of endothelin in the cardiovascular system. Pharmacol. Res. 2011;63:463-72. DOI:10.3317/jraas.2002.001.

54. Bledar C., Olausson J., Charlotte A., et al. Circulating concentrations of endothelin-1 predict coronary heart disease in women but not in men: a longitudinal observational study in the Vara-Skovde Cohort. BMC Cardiovascular Disorders. 2015;15:146. DOI:10.1186/s12872-015-0141-y.

55. Ying F., Li S., Li X-L., et al. Plasma endothelin-1 level as a predictor for poor collaterals in patientswith ≥95% coronary chronic occlusion. Thrombosis Research 142 (2016) 21-25. DOI:10.1016/j.thromres.2016.04.007.

56. Ye M., Ju С., Li F. Plasma Brain Natriuretic Peptide, Endothelin-1, and Matrix Metalloproteinase Expression and Significance in Type 2 Diabetes Mellitus Patients with Ischemic Heart Disease. Med Sci Monit. 2015;21:2094-9. DOI:10.12659/MSM.893375.


Review

For citations:


Zhito A.V., Iusupova A.O., Privalova E.V., Khabarova N.V., Belenkov Yu.N. Markers of Endothelial Dysfunction: E-selectin, Endothelin-1 and von Willebrand Factor in Patients with Coronary Heart Disease, Including in Combination with Type 2 Diabetes Mellitus. Rational Pharmacotherapy in Cardiology. 2019;15(6):892-899. (In Russ.) https://doi.org/10.20996/1819-6446-2019-15-6-892-899

Views: 897


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)