Preview

Рациональная Фармакотерапия в Кардиологии

Расширенный поиск

KОРРЕКЦИЯ ЛИПИДНОГО ОБМЕНА С ИСПОЛЬЗОВАНИЕМ АНТИСЕНС-ТЕХНОЛОГИЙ

https://doi.org/10.20996/1819-6446-2013-9-5-532-541

Аннотация

Обсуждают использование антисмысловых олигонуклеотидов (АСО) для разработки препаратов для коррекции нарушений липидного обмена. Анализируют основные типы АСО и механизмы их действия на целевую мРНК. Рассматривают достоинства и недостатки различных АСО с точки зрения требований для их терапевтического применения.
Описывают методы химической модификации олигонуклеотидов; преимущества и недостатки различных способов доставки АСО препаратов в клетки; состояние разработок крупнейшими фармакологическими компаниями АСО препаратов для коррекции нарушений липидного обмена; данные, полученные при проведении клинических испытаний таких препаратов.

Об авторах

О. И. Афанасьева
Российский кардиологический научно-производственный комплекс, Москва
Россия
Доктор биологических наук, ведущий научный сотрудник лаборатории проблем атеросклероза института экспериментальной кардиологии


С. Н. Покровский
Российский кардиологический научно-производственный комплекс, Москва
Россия
Доктор биологических наук, профессор, руководитель лаборатории проблем атеросклероза института экспериментальной кардиологии


Список литературы

1. Bennet CF, Swayze EE. RNA Targeting Therapeutics: Molecular Mechanisms of Antisense Oligonucleotides as a Therapeutic Platform. Annu Rev Pharmacol Toxicol 2010; 50: 259-93.

2. Haussechecker D. The Business of RNAi Therapeutic in 2012. Molecular Therapy. Nucleic Acids 2012; 2: e8.

3. Crooke RM, Graham MJ. Therapeutic potential of antisense oligonucleotides for the management of dyslipidemia. Clin Lipidol 2011; 6(6): 675-92.

4. Raal FJ, Santos RD. Homozygous familial hypercholesterolemia: current perspectives on diagnosis and treatment. Atherosclerosis 2012; 223(2): 262-8.

5. Fruchart JC, Sacks FM, Hermans MP, et al. The Residual Risk Reduction Initiative: a call to action to reduce residual vascular risk in dyslipidaemic patient. Diabetes Vasc Dis Res 2008; 5: 319-35.

6. Nordestgaard BG, Chapman MJ, Ray K, et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J 2010; 31: 2844-53.

7. Yezhov MV, Trukhacheva EP, Afanasieva OI, et al. Relationship of lipoprotein ( a) and homocysteine with coronary atherosclerosis in young and middle ages. Cardiovascular Therapy and Prevention in 2008; (5): 10-15. Russian (Ежов М.В., Трухачева Е.П., Афанасьева О.И., и др. Связь липопротеида(а) и гомоцистеина с коронарным атеросклерозом у мужчин молодого и среднего возрастов. Кардиоваскулярная Терапия и Профилактика 2008; (5): 10-15).

8. Afanasyeva OI, Yezhov CF, Afanasyeva MI, et al. Relationship low molecular phenotype of apoprotein ( a) and concentrations of lipoprotein (a ) with multifocal atherosclerosis in patients with coronary heart disease. Rational Pharmacother Card 2010; 6 (4) : 474-80. Russian (Афанасьева ОИ, Ежов МВ, Афанасьева МИ, и др. Связь низкомолекулярного фенотипа апобелка(а) и концентрации липопротеида(а) с мультифокальным атеросклерозом у больных ишемической болезнью сердца. Рациональная Фармакотерапия в Кардиологии 2010; 6 (4): 474-80).

9. Safarova MS, Yezhov MV, Trukhacheva EP et al. Pleiotropic effects of nicotinic acid in men with coronary heart disease and high lipoprotein (a). Cardiology 2011; (5): 9-16. Russian (Сафарова МС, Ежов М.В., Трухачева Е.П. и др. Плейотропные эффекты никотиновой кислоты у мужчин с ишемической болезнью сердца и высоким уровнем липопротеида(а). Кардиология 2011; (5): 9-16).

10. Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010; 466(7307): 707-13.

11. Bauer RC, Stylianou IM, Rader DJ. Functional validation of new pathways in lipoprotein metabolism identified by human genetics. Curr Opin Lipidol 2011; 22(2): 123-8.

12. Chapman MJ, Ginsberg HN, Amarenco P et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J 2011; 32 (11): 1345-61.

13. Danesh J, Erqou S, Walker M et al. The Emerging Risk Factors Collaboration: analysis of individual data on lipid, inflammatory and other markers in over 1.1 million participants in 104 prospective studies of cardiovascular diseases. Eur J Epidemiol 2007; 22 (12): 839-69.

14. Ooi EMM, Barrett HR, Chan DC, et al. Apolipoprotein CIII: understanding an emerging risk factor. Clin Sci 2008; 114: 611-624.

15. Chapman MJ, Le Goff W, Guerin M, et al. Cholesteryl ester transfer protein: at the heart of the action of lipidmodulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors. Eur Heart J 2010; 31(2): 149-64.

16. Brautbar A, Ballantyne CM. Pharmacological strategies for lowering LDL cholesterol: statins and beyond. Nat Rev Cardiol 2011; 8(5): 253-9.

17. Wu H, Lima WF, Zhang H, et al. Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem 2004; 279: 17181-9.

18. Makarov YuA, Kramerov DA. The non-coding RNA. Browse. Biochemistry 2007, 72 (11): 1427-48. Russian (Макарова ЮА, Крамеров ДА. Некодирующие РНК. Обзор. Биохимия 2007; 72(11): 1427-48).

19. Liu J, Carmell MA, Rivas FV, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004; 305: 1437-41.

20. Shrivastava N, Srivastava A. RNA interference: an emerging generation of biologicals. Biotechnol J 2008; 3(3): 339-3.

21. Hartmann D, Thum T. Micro RNAs and vascular (dis)function. Vascular Pharmacology 2011; 102: 5592-605.

22. Bratkovič T, Glavan G, Strukelj B, Zivin M, Rogelj B. Exploiting microRNAs for cell engineering and therapy. Biotechnol Adv 2012; 30(3): 753-65.

23. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136: 215-336.

24. Bill BR, Petzold AM, Clark KJ, et al. A primer for morpholino use inzebrafish. Zebrafish 2009; 6: 69-77.

25. Hochreiter AE, Xiao H, Goldblatt EM, et al. Telomerase template antagonist GRN163L disrupts telomere maintenance, tumor growth, and metastasis of breast cancer. Clin Cancer Res 2006; 12: 3184-92.

26. Skoblov MYu. Prospects for antisense therapy technologies. Molecular Biology 2009; 43 (6): 984-998. Russian (Скоблов МЮ. Перспективы технологий антисмысловой терапии. Молекулярная Биология 2009; 43(6): 984-998).

27. Daka A, Peer D. RNAi-based nanomedicines for targeted personalized therapy. Adv Drug Deliv Rev 2012; 64(13): 1508-21.

28. Mysara M, Garibaldi J, Elhefnawi M. Mys iRNA – designer: a workflow for efficient siRNA design. PLoS One 2011;6: e25642.

29. Mook OR, Baas F, de Wissel MB, Fluiter K. Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther 2007; 6(3): 833-43.

30. Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 2007; 59(2-3): 75-86.

31. Gao YS, Mei J, Tong TL, et al. Inhibitory effects of VEGF-siRNA mediated by adenovirus on osteosarcoma-bearing nude mice. Cancer Biother Radiopharm 2009;24(2):243-7.

32. Raghunathan S, Patel BM. Therapeutic implications of interfering RNA in cardiovascular diseases. Fundamental and Clinical Pharmacology 2013; 27(1): 1-20.

33. Gao Y, Liu XL, Li XR. Research progress on siRNA delivery with nonviral carriers. Int J Nanomedicine 2011; 6:1017-25.

34. Gavrilov K, Saltzman MW. Therapeutic siRNA: Principles, Challenges, and Strategies. Yale Journal of Boil And Med 2012;85:187-200.

35. Rayner KJ, Fernandez-Hernando C, Moore KJ. MicroRNAs regulating lipid metabolism in atherogenesis. Thromb Haemost 2012;107(4):642-7.

36. Rayner K, Suarez Y, Davalos A et al. miR33 contributes to the regulation of cholesterol homeostasis. Science 2010; 328: 1570-3.

37. Miyares MA. Anacetrapib and dalcetrapib: two novel cholesteryl ester transfer protein inhibitors. Ann Pharmacother 2011;45: 84-94.

38. Olivieri O, Martinelli N, Girelli G et al. Apolipoprotein CIII predicts cardiovascular mortality in severe coronary artery disease and is associated with an enhanced thrombin generation. J Thromb Haemost 2010;8: 463-71.

39. Holmberg R, Refai E, Hoog A et al. Lowering apolipoprotein CIII delays onset of type 1 diabetes. Proc Natl Acad Sci USA 2011; 108(26): 10685-9.

40. Liu Y, Millar JS, Cromley DA, et al. Knockdown of Acyl-CoA: diacylglycerol acyltransferase 2 with antisense oligonucleotide reduces VLDL TG and ApoB secretion in mice. Biochim Biophys Acta 2008; 1781: 97-104.

41. Visser ME. Antisense oligonucleotide for the treatment of dyslipidaemia. Eur Heart J 2012;33:1451-8.

42. Zimmermann TS, Lee ACH, Akinc A, et al. RNAi-mediated gene silencing in nonhuman primates. Nature 2006; 441: 111-4.

43. Kassim SH, Wilson JM, Rader DJ. Gene therapy for dyslipidemia: a review of gene replacement and gene inhibition strategies. Clin Lipidol 2010; 5(6): 793-809.

44. Nishina K, Unno T, Uno Y et al. Efficient in vivo delivery of siRNA to the liver by conjugation of alphatocopherol. Mol Ther 2008; 16:734-40.

45. Straarup EM, Fisker N, Hedtja M, et al Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates. Nucleic Acids Research 2010; 38(20):7100-11.

46. Khoo B, Roca X, Chew SL, et al. Antisense oligonucleotide-induced alternative splicing of the APOB mRNA generates a novel isoform of APOB. BMC Mol Biol 2007; 8: 3-16.

47. Zhang DW, Lagace TA, Garuti R et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factorlike repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem 2007;282: 18602-12.

48. Graham MJ, Lemonidis KM, Whipple CP et al. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J Lipid Res 2007;48: 763-7.

49. Gupta N, Fisker N, Asselin MC et al. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One 2010; 5(5): E10682.

50. Lindholm MW, Elmén J, Fisker N, et al. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates. Mol Ther 2012;20(2): 376-81.

51. Merki E, Graham MJ, Mullick AE, et al. Antisense oligonucleotide directed to human apolipoprotein B-100 reduces lipoprotein(a) levels and oxidized phospholipids on human apolipoprotein B-100 particles in lipoprotein(a) transgenic mice. Circulation 2008; 118:743-53.

52. Merki E, Graham MJ. Antisens oligonucleotide lowers plasma levels of apolipoprotein(a) and lipopro- tein(a) in transgenic mice. J Am Coll Cardiol 2011;57(15):1611-21.

53. Raal FJ, Santos RD Blom DJ et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, doubleblind, placebocontrolled trial. Lancet 2010; 375: 998-1006.

54. Visser ME, Kastelein JJ, Stroes ES. Apolipoprotein B synthesis inhibition: results from clinical trials. Curr Opin Lipidol 2010;21(4): 319-23.

55. Kwoh TJ. An overview of the clinical safety experience of first and secondgeneration antisense oligonucleotides. In: Crooke ST, editor. Antisense Drug Technology: Principles, Strategies and Application (2nd Edition). Boca Raton, FL: CRC press;2008: 365-99.

56. Vickers TA, Lima WF, Nichols JG, et al. Reduced levels of Ago2 expression result in increased siRNA competition in mammalian cells. Nucleic Acids Res 2007;35: 6598-610.

57. John M, Constien R, Akinc A, et al. Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway. Nature 2007; 449:745-47.

58. Birmingham A, Anderson EM, Reynolds A et al. 3'UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 2006; 3(3): 199-204.

59. Reynolds A, Anderson EM, Vermeulen A, et al. Induction of the interferon response by siRNA is cell typeand duplex length- dependent. RNA 2006; 12(6):988-93.

60. Hornung V, Guenthner-Biller M, Bourquin C, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005;11(3):263-70.


Рецензия

Для цитирования:


Афанасьева О.И., Покровский С.Н. KОРРЕКЦИЯ ЛИПИДНОГО ОБМЕНА С ИСПОЛЬЗОВАНИЕМ АНТИСЕНС-ТЕХНОЛОГИЙ. Рациональная Фармакотерапия в Кардиологии. 2013;9(5):532-541. https://doi.org/10.20996/1819-6446-2013-9-5-532-541

For citation:


Afanasieva O.I., Pokrovsky S.N. LIPID METABOLISM CORRECTION BY ANTISENSE TECHNOLOGY. Rational Pharmacotherapy in Cardiology. 2013;9(5):532-541. (In Russ.) https://doi.org/10.20996/1819-6446-2013-9-5-532-541

Просмотров: 785


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)