Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Healthy Eating in Population Models of Nutrition: Asian Diet Style Summary

https://doi.org/10.20996/1819-6446-2022-12-08

Abstract

The population of Japan and Okinawa is known for the longest life expectancy, which many researchers rightly associate with the nature of nutrition existing in these territories. The Japanese diet and Okinawan diet, along with other traditional diets, are real examples of historically established sustainable patterns of healthy eating. Asian eating styles have marked differences from European eating patterns, not only in differences in food sources, but also in eating habits. The article presents the historical, climatic and cultural features of these diets; the issues of food composition, energy and nutritional value of these models of nutrition are considered in detail with an analysis of the differences existing between them; highlights the benefits of products grown mainly in Japan, which are ration-forming for the population of this country; as well as the results of scientific studies on the protective effect of the Japanese and Okinawan diets on human health and disease prevention.

About the Authors

O. B. Shvabskaia
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Olga B. Shvabskaia

Moscow

eLibrary SPIN 1193-2792



N. S. Karamnova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Natalia S. Karamnova

Moscow

eLibrary SPIN 2878-3016



O. V. Izmailova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Olga V. Izmailova

Moscow

eLibrary SPIN5597-8420



O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Oxana M. Drapkina

Moscow

eLibrary SPIN 4456-1297



References

1. The Seven Countries Study. Study Findings. Conclusions of the research in the Seven Countries. [cited 2022 Aug 10]. Available from: https://www.sevencountriesstudy.com/study-findings/.

2. Ministry of Health, Labor and Welfare of Japan: statistics and other data. Statistics and Information Department, Health and Welfare Statistics Association. Tokyo, Japan [cited 2022 Aug 10]. Available from: https://www.mhlw.go.jp/english/database/db-hw/lifetb20/dl/lifetb20-01.pdf.

3. WHO. Data Platform. Mortality Database [cited 2022 Aug 10]. Available from: https://platform.who.int/mortality/themes/theme-details/mdb/noncommunicable-diseases.

4. FAO. Food-based dietary guidelines [cited 2022 Aug 10]. Available from: https://www.fao.org/nutrition/education/food-dietary-guidelines/regions/countries/japan/en/.

5. Kobayashi M, Sasazuki S, Shimazu T, et al. Association of dietary diversity with total mortality and major causes of mortality in the Japanese population: JPHC study. Eur J Clin Nutr. 2020;74(1):54-66. DOI:10.1038/s41430-019-0416-y.

6. Caprara G. Diet and Longevity: The Effects of Traditional Eating Habits on Human Lifespan Extension. Mediterranean Journal of Nutrition and Metabolism. 2018;11(3):261-94. DOI:10.3233/MNM80225.

7. Brondel L, Lauraine G, Van Wymelbeke V, et al. Alternation between foods within a meal. Influence on satiation and consumption in humans. Appetite. 2009;53(2):203-9. DOI:10.1016/j.appet.2009.06.009.

8. Brunstrom JM, Jarvstad A, Griggs RL, et al. Large Portions Encourage the Selection of Palatable Rather Than Filling Foods. J Nutr. 2016;146(10):2117-23. DOI:10.3945/jn.116.235184.

9. Kuroda M, Ohta M, OkufujiТ, et al. Frequency of soup intake is inversely associated with body mass index, waist circumference, and waist-to-hip ratio, but not with other metabolic risk factors in Japanese men. J Am Diet Assoc. 2011;111(1):137-42. DOI:10.1016/j.jada.2010.10.004.

10. Clegg ME, Ranawana V, Shafat A, Henry CJ. Soups increase satiety through delayed gastric emptying yet increased glycaemic response. Eur J Clin Nutr. 2013;67(1):8-11. DOI:10.1038/ejcn.2012.152.

11. Yamaguchi S, Ninomiya K. Umami and Food Palatability. J Nutr. 2000;130(4):921S-6S. DOI:10.1093/jn/130.4.921S.

12. Leong J, Kasamatsu C, Ong E, et al. A study on sensory properties of sodium reduction and replacement in Asian food using difference-from - control test. Food Sci Nutr. 2015;4(3):469-78. DOI:10.1002/fsn3.308.

13. Bazzano LA, He J, Ogden LG, et al. Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am J Clin Nutr. 2002;76(1):93-9. DOI:10.1093/ajcn/76.1.93.

14. Rolls ЕТ. Functional neuroimaging of umami taste: what makes umami pleasant? Am J Clin Nutr. 2009;90(3):804S-13S. DOI:10.3945/ajcn.2009.27462R.

15. Rolls BJ, Bell EA, Thorwart MT. Water incorporated into a food but not served with a food decreases energy intake in lean women. Am J Clin Nutr. 1999;70(4):448-55. DOI:10.1093/ajcn/70.4.448.

16. Kanauchi М, Kanauchi К. Proposal for an Empirical Japanese Diet Score and the Japanese Diet Pyramid. Nutrients. 2019;11(11):2741. DOI:10.3390/nu11112741.

17. Тomata Y, Zhang S, Kaiho Y, et al. Nutritional characteristics of the Japanese diet: A cross-sectional study of the correlation between Japanese Diet Index and nutrient intake among community-based elderly Japanese. Nutrition. 2019;57:115-21. DOI:10.1016/j.nut.2018.06.011.

18. Yamori Y, Sagara M, Arai Y, et al. Soy and fish as features of the Japanese diet and cardiovascular disease risks. PLoS One. 2017;12(4):e0176039. DOI:10.1371/journal.pone.0176039.

19. Okuda N, Okayama A, Miura K, et al. Food sources of dietary sodium in the Japanese adult population: the international study of macro-/micronutrients and blood pressure (INTERMAP). Eur J Nutr. 2017;56(3):1269-80. DOI:10.1007/s00394-016-1177-1.

20. Asakura K, Uechi K, Masayasu S, Sasaki S. Sodium sources in the Japanese diet: difference between generations and sexes. Public Health Nutr. 2016;19(11):2011-23. DOI:10.1017/S1368980015003249.

21. Ito K, Miyata K, Mohri M, et al. The Effects of the Habitual Consumption of Miso Soup on the Blood Pressure and Heart Rate of Japanese Adults: A Cross-sectional Study of a Health Examination. Intern Med. 2017;56(1):23-9. DOI:10.2169/internalmedicine.56.7538.

22. Zhang S, Otsuka R, Tomata Y, et al. A cross-sectional study of the associations between the traditional Japanese diet and nutrient intakes: the NILS-LSA project. Nutr J. 2019;18(43):3654. DOI:10.1186/s12937-019-0468-9.

23. Kwon DY, Daily JW, Kim HJ, Park S. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr Res. 2010;30(1):1-13. DOI:10.1016/j.nutres.2009.11.004.

24. Okada E, Saito A, Takimoto H. Association between the Portion Sizes of Traditional Japanese Seasonings-Soy Sauce and Miso-and Blood Pressure: Cross-Sectional Study Using National Health and Nutrition Survey, 2012-2016 Data. Nutrients. 2018;10(12):1865. DOI:10.3390/nu10121865.

25. Shimazu T, Kuriyama S, Hozawa A, et al. Dietary patterns and cardiovascular disease mortality in Japan: a prospective cohort study. Int J Epidemiol. 2007;36(3):600-9. DOI:10.1093/ije/dym005.

26. Katagiri R, Sawada N, Goto A, et al. Association of soy and fermented soy product intake with total and cause specific mortality: prospective cohort study. BMJ. 2020;368:m34. DOI:10.1136/bmj.m34.

27. Yan Z, Zhang X, Li C, et al. Association between consumption of soy and risk of cardiovascular disease: A meta-analysis of observational studies. Eur J Prev Cardiol. 2017;24(7):735-47. DOI 10.1177/2047487316686441.

28. Budhathoki S, Sawada N, Iwasaki M, et al. Association of Animal and Plant Protein Intake With AllCause and Cause-Specific Mortality in a Japanese Cohort. JAMA Intern Med. 2019;179(11):1509- 18. DOI:10.1001/jamainternmed.2019.2806.

29. Yamori Y, Sagara M, Mizushima S, et al. An inverse association between magnesium in 24-h urine and cardiovascular risk factors in middle-aged subjects in 50 CARDIAC Study populations. Hypertens Res. 2015;38:219-25. DOI:10.1038/hr.2014.158.

30. Marco ML, Heeney D, Binda S, et al. Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol. 2017;44:94-102. DOI:10.1016/j.copbio.2016.11.010.

31. Peters A, Krumbholz P, Jäger E, et al. Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLoS Genet. 2019;15(5):e1008145. DOI:10.1371/journal.pgen.1008145.

32. Jayachandran M, Xu B. An insight into the health benefits of fermented soy products. Food Chem. 2019;271:362-71. DOI:10.1016/j.foodchem.2018.07.158.

33. Allwood JG, Wakeling LT, Bean DC. Fermentation and the microbial community of Japanese koji and miso: A review. J Food Sci. 2021;86(6):2194-207. DOI: 10.1111/1750-3841.15773.

34. Sasaki H, Ngoc DPT, Nishikawa M, Kanauchi M. Lipopolysaccharide neutralizing protein in Miso, Japanese fermented soybean paste. J Food Sci. 2020;85(8):2498-505. DOI:10.1111/1750-3841.15315.

35. Kishida R, Yamagishi K, Muraki I, et al. Frequency of Seaweed Intake and Its Association with Cardiovascular Disease Mortality: The JACC Study. J Atheroscler Thromb. 2020;27(12):1340-7. DOI:10.5551/jat.53447.

36. Maeda H, Tsukui T, Sashima T, et al. Seaweed carotenoid, fucoxanthin, as a multi-functional nutrient. Asia Pac J Clin Nutr. 2008;17(suppl l):196-9.

37. Miyashita K, Nishikawa S, Beppu F, et al The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds. J Sci Food Agric. 2011;91(7):1166-74. DOI:10.1002/jsfa.4353.

38. Yazaki K, Yoshikoshi C, Oshiro S, Yanase S. Supplemental cellular protection by a carotenoid extends lifespan via Ins/IGF-1 signaling in Caenorhabditis elegans. Oxid Med Cell Longev. 2011;2011:596240. DOI:10.1155/2011/596240.

39. Aisa Y, Miyakawa Y, Nakazato T, et al. Fucoidan induces apoptosis of human HS-sultan cells accompanied by activation of caspase-3 and down-regulation of ERK pathways. Am J Hematol. 2005;78(1):7-14. DOI:10.1002/ajh.20182.

40. Wang J, Zhang Q, Zhang Z, Li Z. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int J Biol Macromol. 2008;42(2):127-32. DOI:10.1016/j.ijbiomac.2007.10.003.

41. Abe SK, Inoue M. Green tea and cancer and cardiometabolic diseases: a review of the current epidemiological evidence. Eur J Clin Nutr. 2021;75(6):865-76. DOI:10.1038/s41430-020-00710-7.

42. Yi M, Wu X, Zhuang W, et al. Tea Consumption and Health Outcomes: Umbrella Review of MetaAnalyses of Observational Studies in Humans. Mol. Nutr Food Res. 2019;63:1900389. DOI:10.1002/mnfr.201900389.

43. Bechthold A, Boeing H, Schwedhelm C et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit Rev Food Sci Nutr. 2019;59(7):1071-90. DOI:10.1080/10408398.2017.1392288.

44. MAFF. Ministry of Agriculture, Forestry and Fisheries of Japan. [cited 2022 Sept 5]. Available from: https://www.maff.go.jp/j/keikaku/syokubunka/k_ryouri/area_stories/okinawa.html.

45. Hiroko S. History and characteristics of Okinawan longevity food. APJCN. 2001;10(2):159-64. DOI:10.1111/j.1440-6047.2001.00235.x.

46. Willcox BJ, Willcox DC, Todoriki H, et al. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world's longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci. 2007;1114:434-55. DOI:10.1196/annals.1396.037.

47. Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the Mediterranean: a focus on the Okinawan diet. Mech Ageing Dev. 2014;136-137:148-62. DOI:10.1016/j.mad.2014.01.002.

48. Todoriki H, Willcox DC, Willcox BJ. The effects of post-war dietary change on longevity and health in Okinawa. Oki J Amer Studies. 2008;(1):52-61 [cited 2022 Sept 5]. Available from: https://uryukyu.repo.nii.ac.jp/records/2003994.

49. Ludvik B, Waldhäusl W, Prager R, et al. Mode of action of ipomoea batatas (Caiapo) in type 2 diabetic patients. Metabolism. 2003;52(7):875-80. DOI:10.1016/s0026-0495(03)00073-8.

50. Murakami A, Ishida H, Kobo K, et al. Suppressive effects of Okinawan food items on free radical generation from stimulated leukocytes and identification of some active constituents: implications for the prevention of inflammation-associated carcinogenesis. Asian Pac J Cancer Prev. 2005;6(4):437-48.

51. Krawinkel MB, Keding GB. Bitter gourd (Momordica Charantia): A dietary approach to hyperglycemia. Nutr Rev. 2006;64(7 Pt 1):331-7. DOI:10.1301/nr.2006.jul.331-337.

52. Taku K, Umegaki K, Sato Y, et al. Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr. 2007;85(4):1148-56. DOI:10.1093/ajcn/85.4.1148.

53. Hsu RL, Lee KT, Wang JH, et al. Amyloid-degrading ability of nattokinase from Bacillus subtilis natto. J Agric Food Chem. 2009;57(2):503-8. DOI:10.1021/jf803072r.

54. Sacks FM, Lichtenstein A, Van Horn L, et al. American Heart Association Nutrition Committee. Soy protein, isoflavones, and cardiovascular health: an American Heart Association Science Advisory for professionals from the Nutrition Committee. Circulation. 2006;113(7):1034-44. DOI:10.1161/CIRCULATIONAHA.106.171052.

55. Asher GN, Spelman K. Clinical utility of curcumin extract. Altern Ther Health Med. 2013;19(2): 20-22.

56. Cole GM, Teter B, Frautschy SA. Neuroprotective effects of curcumin. Adv Exp Med Biol. 2007;595:197-212. DOI:10.1007/978-0-387-46401-5_8.

57. Sustainable healthy diets. Guiding principles. Rome: FAO and WHO; 2020.


Review

For citations:


Shvabskaia O.B., Karamnova N.S., Izmailova O.V., Drapkina O.M. Healthy Eating in Population Models of Nutrition: Asian Diet Style Summary. Rational Pharmacotherapy in Cardiology. 2022;18(6):692-702. (In Russ.) https://doi.org/10.20996/1819-6446-2022-12-08

Views: 646


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)