Preview

Rational Pharmacotherapy in Cardiology

Advanced search

The oxytocin-oxytocin receptors system — a new pathogenetic mechanism in the development of diabetic phenotype of heart failure with preserved ejection fraction in women

https://doi.org/10.20996/1819-6446-2024-3078

EDN: UDNFZC

Abstract

Aim. To determine the pathogenetic role of the oxytocinergic system in the development of myocardium structural and functional changes in women with heart failure with preserved ejection fraction (HFpEF) associated with type 2 diabetes mellitus (DM2T) (diabetic phenotype of HFpEF).

Material and methods. The study included 60 women aged 67.0±4.9 years with HFpEF stage I-IIA, FC I-III, 30 of them had DM2T who were admitted for elective coronary artery bypass grafting. The development of HFpEF is caused by coronary artery disease (CAD) and arterial hypertension (AH). Prior to surgery, all patients underwent a standard examination, blood levels of NT-proBNP, oxytocin (Ox), echocardiography were determined to find the types of left ventricular (LV) myocardial remodeling and diastolic dysfunction (DD). Myocardium biopsies of the right atrium auricle obtained during coronary bypass surgery were studied by microscopy, morphometry and immunohistochemistry (the expression of oxytocin receptors (OxR), a marker of proliferation ki-67).

Results. According to echocardiography, eccentric LV hypertrophy (46.7/36.7%) and DD type 2 (47/17%, p=0.003) prevailed in the group of women with the diabetic phenotype of HFpEF. A higher content of NT-proBNP (480.72±241.87/434.46±282.78 ng/ml, p=0.06) and a lower concentration of Ox (102.11±35.89/320.37±294.71 pg/ml, p=0.0016) in blood serum were established, as well as an increase in the number of cardiomyocytes (CMC) with a high expression level OxR (63.69±19.47/12.16±23.09%, p=0.000) in patients with the diabetic phenotype of HFpEF. Negative associations were determined between the blood level of Ox and the CMC diameter (r=-0.10, p=0.020), the area of their cytoplasm (r=-0.16, p=0.000) and the area of the nuclei (r=-0.11, p=0.015) in patients of both groups. A decrease in Ox concentration in the blood of patients with diabetic phenotype of HFpEF was accompanied by an increase in the number of CMCs with a high level of OxR expression (r=-0.63, p=0.000).

Conclusion. The study has shown the important involvement of oxytocinergic signaling pathways in the HFpEF pathogenesis. HFpEF associated with DM2T in women was characterized by more unfavorable structural and functional changes in the myocardium, a significant increase in the number of hypertrophied CMCs with a high level of OxR expression and Ox decrease in blood serum. The mechanisms of the first-established significant increase in the content of Ox in the blood of patients with HFpEF without diabetes and its significant decrease in patients with diabetic phenotype of HFpEF leading to more pronounced structural and functional changes in the myocardium, require further study.

About the Authors

A. D. Starchenko
Orenburg State Medical University
Russian Federation

Anastasiya D. Starchenko.

Orenburg



Yu. V. Liskova
Pirogov Russian National Research Medical University
Russian Federation

Yulia V. Liskova.

Moscow



A. A. Stadnikov
Orenburg State Medical University
Russian Federation

Alexander A. Stadnikov.

Orenburg



References

1. Conlon FL, Arnold AP. Sex chromosome mechanisms in cardiac development and disease. Nat Cardiovasc Res. 2023;2(4):340-50. DOI:10.1038/s44161-023-00256-4.

2. Barton M, Meyer MR. Heart failure with preserved ejection fraction in women: new clues to causes and treatment. JACC Basic Transl Sci. 2020;5(3):296-9. DOI:10.1016/j.jacbts.2020.02.001.

3. Sabbatini AR, Kararigas G. Menopause-related estrogen decrease and the pathogenesis of HFpEF: JACC review topic of the week. J Am Coll Cardiol. 2020;75(9):1074-82. DOI:10.1016/j.jacc.2019.12.049.

4. Meyer S, van der Meer P, van Deursen VM, et al. Neurohormonal and clinical sex differences in heart failure. Eur Heart J. 2013;34(32):2538-47. DOI:10.1093/eurheartj/eht152.

5. Rosano GM, Lewis B, Agewall S, et al. Gender differences in the effect of cardiovascular drugs: a position document of the Working Group on Pharmacology and Drug Therapy of the ESC. Eur Heart J. 2015;36(40):2677-80. DOI:10.1093/eurheartj/ehv161.

6. Barth C, Villringer A, Sacher J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front Neurosci. 2015;9:37. DOI:10.3389/fnins.2015.00037.

7. Kawai A, Nagatomo Y, Yukino-Iwashita M, et al. Sex Differences in Cardiac and Clinical Phenotypes and Their Relation to Outcomes in Patients with Heart Failure. J Pers Med. 2024;14(2):201. DOI:10.3390/jpm14020201.

8. Dunlay SM, Givertz MM, Aguilar D, et al; American Heart Association Heart Failure and Transplantation Committee of the Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; Heart Failure Society of America. Type 2 diabetes mellitus and heart failure, a scientific statement from the American Heart Association and the Heart Failure Society of America: This statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation. 2019;140(7):294-324. DOI:10.1161/CIR.0000000000000691.

9. Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyper­glycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61(1):21-28. DOI:10.1007/s00125-017-4390-4.

10. Ding C, Leow MK, Magkos F. Oxytocin in metabolic homeostasis: implica­­tions for obesity and diabetes management. Obes Rev. 2019;20(1):22-40. DOI:10.1111/obr.12757.

11. Jankowski M, Broderick TL, Gutkowska J. The role of oxytocin in cardiovascu­lar protection. Front Psychol. 2020;11:516048. DOI:10.3389/fpsyg.2020.02139.

12. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39.e14. DOI:10.1016/j.echo.2014.10.003.

13. Tereshchenko SN, Galyavich AS, Uskach TM, et al. Chronic heart failure. Clinical guidelines 2020. Russian Journal of Cardiology. 2020;11:311-74 (In Russ.) DOI:10.15829/1560-4071-2020-4083.

14. Avtandilov GG. Medical morphometry. M.: Medicina, 1990 (In Russ.)

15. Dedov II, Shestakov MV, Majorov AI, et al. Diabetes mellitus type 2 in adults. Diabetes mellitus. 2020;23(2S):4-102 (In Russ.) DOI:10.14341/DM12507.

16. Ohkuma T, Komorita Y, Peters SAE, Woodward M. Diabetes as a risk factor for heart failure in women and men: a systematic review and meta-analysis of 47 cohorts including 12 million individuals. Diabetologia. 2019;62(9):1550-60. DOI:10.1007/s00125-019-4926-x.

17. Benomar K, Espiard S, Loyer C, et al. Hormones natriurétiques et syndrome métabolique: mise au point. Presse Med. 2018;47(2):116-24 (In French) [Benomar K, Espiard S, Loyer C, et al. Atrial natriuretic hormones and metabo­­lic syndrome: recent advances. Presse Med. 2018;47(2):116-24]. DOI:10.1016/j.lpm.2017.12.002.

18. Jankowski M, Broderick TL, Gutkowska J. Oxytocin and cardioprotection in diabetes and obesity. BMC Endocr Disord. 2016;16(1):34. DOI:10.1186/s12902-016-0110-1.

19. Paulus WJ, Zile MR. From systemic inflammation to myocardial fibrosis: the heart failure with preserved ejection fraction paradigm revisited. Circ Res. 2021;128(10):1451-67. DOI:10.1161/circresaha.121.318159.

20. Kajstura J, Gurusamy N, Ogórek B, et al. Myocyte turnover in the aging human heart. Circ Res. 2010;107(11):1374-86. DOI:10.1161/CIRCRESAHA.110.231498.

21. Dunlay SM, Roger VL. Gender differences in the pathophysiology, clinical presentation, and outcomes of ischemic heart failure. Curr Heart Fail Rep. 2012;9(4):267-76. DOI:10.1007/s11897-012-0107-7.

22. Biondi-Zoccai G, Abate A, Bussani R, et al. Reduced post-infarction myocar­dial apoptosis in women: a clue to their different clinical course? Heart. 2005;91(1):99-101. DOI:10.1136/hrt.2003.018754.

23. Starchenko AD, Liskova YuV, Stadnikov AA, Myasnikova AA. Evaluation of the effect of oxytocin on structural and functional changes of the myocardium in experimental heart failure. Journal of Anatomy and Histopathology. 2024;13(2):54-62 (In Russ.) DOI:10.18499/2225-7357-2024-13-2-54-62.

24. Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myo­cytes divide after myocardial infarction. N Engl J Med. 2011;344(23):1750-7. DOI:10.1056/NEJM200106073442303.

25. Redfield MM, Jacobsen SJ, Borlaug BA, et al. Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation. 2005;112(15):2254-62. DOI:10.1161/CIRCULATIONAHA.105.541078.

26. Kraus D, Jäger J, Meier B, et al. Aldosterone inhibits uncoupling protein-1, induces insulin resistance, and stimulates proinflammatory adipokines in adipocytes. Horm Metab Res. 2005;37(7):455-9. DOI:10.1055/s-2005-870240.


Supplementary files

Review

For citations:


Starchenko A.D., Liskova Yu.V., Stadnikov A.A. The oxytocin-oxytocin receptors system — a new pathogenetic mechanism in the development of diabetic phenotype of heart failure with preserved ejection fraction in women. Rational Pharmacotherapy in Cardiology. 2024;20(4):378-385. (In Russ.) https://doi.org/10.20996/1819-6446-2024-3078. EDN: UDNFZC

Views: 321


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)