Preview

Rational Pharmacotherapy in Cardiology

Advanced search

The role of CYP2C19 gene nucleotide sequence variants in assessing response to P2Y12 receptor inhibitor antiplatelet therapy in old patients with acute coronary syndrome

https://doi.org/10.20996/1819-6446-2025-3204

EDN: XMSTCE

Abstract

Aim. To assess the association between carrying CYP2C19 polymorphic variants and response to antiplatelet therapy, evaluated by residual platelet reactivity (Platelet Reactivity Units, PRU), in patients from different age groups.
Material and methods. The study included 140 patients with ACS receiving antiplatelet therapy with P2Y12 receptor inhibitors. The main group consisted of 70 patients aged 75 to 90 years (senile age), 35 taking clopidogrel, and 35 taking ticagrelor. The control group consisted of 70 patients aged 45 to 74 years (old and middle age), 35 taking clopidogrel, and 35 taking ticagrelor. The antiplatelet effect of therapy was assessed by studying non-stabilized whole blood using the VerifyNow point-ofcare assay. Carriage of the CYP2C19*2 and CYP2C19*3 alleles was determined using commercial reagent kits (Sintol LLC, Russia), and CYP2C19*17 was determined using commercial kits (Applied Biosystems, USA).
Results. The influence of CYP2C19 genetic variability on residual platelet aggregation was evaluated in elderly patients compared to patients of old and middle age. PRU values in the main group (senile age) (120.9 (48.5; 205.0)) on day 2 were statistically significantly higher (p=0.03) than in the control group (old and middle age) (96.06 (17.0; 174.5)). The same trend was observed in all subgroup comparison depending on the drug used: PRU values were statistically significantly higher in the main group of patients. Genotype distribution corresponded to the Hardy-Weinburg law for CYP2C19*17 and CYP2C19*2 except for CYP2C9*3. In control group patients receiving ticagrelor, carriage of the T allele (CYP2C19*17 locus) was statistically significantly associated with lower PRU levels (p=0.023). Furthermore, in the main study group among patients with PRU>208 receiving clopidogrel, carriers of the minor T allele at the CYP2C19*17 locus were statistically significantly more frequent (p=0.022) (CC genotype in 32% of patients, CT/TT genotypes in 80%).
Conclusion. Comparison of the main (senile age) and control (old and middle age) groups revealed that elderly age is associated with higher PRU values. A similar pattern was found when analyzing the main and control groups by subgroups depending on the drug taken: the proportion of patients with PRU values >208 was statistically significantly higher among patients from the main group (senile age). The obtained results regarding the carriage of the minor T allele at the CYP2C19*17 locus and PRU values in the main group could be associated with the phenomenon of phenoconversion, comorbidity, and polypharmacy in elderly patients.

About the Authors

A. S. Markova
Russian Medical Academy of Continuous Professional Education
Russian Federation

A. S. Markova

Moscow



K. B. Mirzaev K. B.
Russian Medical Academy of Continuous Professional Education; Petrovsky Russian Scientific Center of Surgery
Russian Federation

К. B. Mirzaev

Moscow



D. A. Sychev
Russian Medical Academy of Continuous Professional Education; Petrovsky Russian Scientific Center of Surgery
Russian Federation

Sychev D. A.

Moscow



O. T. Bogova
Russian Medical Academy of Continuous Professional Education
Russian Federation

Bogova O. T.

Moscow



S. N. Puzin
Russian Medical Academy of Continuous Professional Education; Sechenov Moscow State Medical University; Federal Scientific and Clinical Center of Resuscitation and Rehabilitation
Russian Federation

S. N. Puzin

Moscow



Sh. P. Abdullaev
Russian Medical Academy of Continuous Professional Education; Petrovsky Russian Scientific Center of Surgery
Russian Federation

Abdullaev Sh. P.

Moscow



A. V. Kryukov
Russian Medical Academy of Continuous Professional Education; Filatov City Clinical Hospital No. 15
Russian Federation

Kryukov A. V.

Moscow



O. V. Averkov
Filatov City Clinical Hospital No. 15
Russian Federation

Averkov O. V.

Moscow



V. I. Vechorko
Filatov City Clinical Hospital No. 15
Russian Federation

Vechorko V. I.

Moscow



K. A. Akmalova
Moscow Clinical Science and Research Center No. 52
Russian Federation

Akmalova K. A.

Moscow



References

1. Russian Statistical Yearbook. 2024: Rosstat. Moscow, 2024. (In Russ.).

2. Shalnova SA, Konradi AO, Karpov YuA, et al. Cardiovascular mortality in 12 Russian Federation regions — participants of the “Cardiovascular Disease Epidemiology in Russian Regions” study. Russian Journal of Cardiology. 2012;(5):6-11. (In Russ.).

3. Byrne RA, Rossello X, Coughlan JJ, et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur Heart J. 2023; 44(38):3720-826. DOI:10.1093/eurheartj/ehad191. Erratum in: Eur Heart J. 2024;45(13):1145. DOI:10.1093/eurheartj/ehad870.

4. Oshchepkova EV, Sagaydak OV, Chazova IE. Management of acute coronary syndrome in older adults (data from russian federal acute coronary syndrome registry). Terapevticheskiy arkhiv. 2018;90(3):67-71. (In Russ.).

5. Belousov YuB, Leonova MV, Belousov DYu, et al. Fundamentals of clinical pharmacology and rational pharmacotherapy: a guide for practicing physicians. Moscow: Bionics, 2002. (In Russ.).

6. Van Pottelbergh G, Van Heden L, Mathei C, Degryse J. Methods to evaluate renal function in elderly patients: a systematic literature review. Age Ageing. 2010;39(5):542-8. DOI:10.1093/ageing/afq091.

7. Collinson J, Bakhai A, Flather MD, Fox KA. The management and investigation of elderly patients with acute coronary syndromes without ST elevation: an evidence-based approach? Results of the Prospective Registry of Acute Ischaemic Syndromes in the United Kingdom (PRAIS-UK). Age Ageing. 2005;34(1):61-6. DOI:10.1093/ageing/afh236.

8. He S, Lin Y, Tan Q, et al. Ticagrelor resistance in cardiovascular disease and ischemic stroke. J Clin Med. 2023;12(3):1149. DOI:10.3390/jcm12031149.

9. Sibbing D, Aradi D, Alexopoulos D, et al. Updated expert consensus statement on platelet function and genetic testing for guiding P2Y12 receptor inhibitor treatment in percutaneous coronary intervention. JACC: Cardiovasc Interv. 2019;21(16):1521-37. DOI:10.1016/j.jcin.2019.03.034.

10. Miura G, Ariyoshi N, Sato Y, et al. Genetic and non-genetic factors responsible for antiplatelet effects of clopidogrel in Japanese patients undergoing coronary stent implantation: an algorithm to predict on-clopidogrel platelet reactivity. Thromb Res. 2014;134(4):877-83. DOI:10.1016/j.thromres.2014.07.018.

11. Kumbhani DJ, Cannon CP, Beavers CJ, et al. 2020 ACC Expert Consensus Decision Pathway for Anticoagulant and Antiplatelet Therapy in Patients With Atrial Fibrillation or Venous Thromboembolism Undergoing Percutaneous Coronary Intervention or With Atherosclerotic Cardiovascular Disease: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021;77(5):629-58. DOI:10.1016/j.jacc.2020.09.011.

12. Botton MR, Whirl-Carrillo M, Del Tredici AL, et al. PharmVar GeneFocus: CYP2C19. Clin Pharmacol. Ther. 2021;109(2):352-66. DOI:10.1002/cpt.1973.

13. González A, Moniche F, Cayuela A, et al. Effect of CYP2C19 polymorphisms on the platelet response to clopidogrel and influence on the effect of high versus standard dose clopidogrel in carotid artery stenting. Eur J Vasc Endovasc Surg. 2016;51(2):175-86. DOI:10.1016/j.ejvs.2015.09.020.

14. Li-Wan-Po A, Girard T, Farndon P, et al. Pharmacogenetics of CYP2C19: Functional and Clinical Implications of a New Variant CYP2C19*17. Br J Clin Pharmacol. 2010;69(3):222-30. DOI:10.1111/j.1365-2125.2009.03578.x.

15. Dean L, Kane M. Clopidogrel Therapy and CYP2C19 Genotype. 2012 Mar 8 [Updated 2022 Dec 1. In: Pratt VM, Scott SA, Pirmohamed M, et al., editors. Medical Genetics Summaries [Internet. Bethesda (MD): National Center for Biotechnology Information (US); 2012-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK84114/

16. Wang Y, Meng X, Wang A, et al. Ticagrelor versus clopidogrel in CYP2C19 lossof-function carriers with stroke or TIA. N Engl J Med. 2021;385(27):2520-30. DOI:10.1056/NEJMoa2111749.

17. Wallentin L, James S, Storey RF, et al. Effect of CYP2C19 and ABCB1 Single Nucleotide Polymorphisms on Outcomes of Treatment With Ticagrelor Versus Clopidogrel for Acute Coronary Syndromes: A Genetic Substudy of the PLATO Trial. Lancet. 2010;376(9749):1320-8. DOI:10.1016/S0140-6736(10)61274-3

18. Choi JL, Li S, Han JY. Platelet function tests: a review of progresses in clinical application. Biomed Res Int. 2014;2014(1):456569. DOI:10.1155/2014/456569.

19. Mansouritorghabeh H, de Laat B, Roest M. Current methods of measuring platelet activity: pros and cons. Blood Coagul Fibrinolysis. 2020;31(7):426-33. DOI:10.1097/MBC.0000000000000941

20. Alexopoulos D, Xanthopoulou I, Storey RF, et al. Platelet reactivity during ticagrelor maintenance therapy: a patient-level data meta-analysis. Am Heart J. 2014;168(4):530-6. DOI:10.1016/j.ahj.2014.06.026.

21. Razali NM, Wah YB. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors аnd Anderson-Darling tests. Journal of Statistical Modeling and Analytics. 2011;2(1):21-33.

22. Pontis A, Delavenne X, Verdier MC, et al. Impact of age on in vitro metabolism of clopidogrel: a potential explanation for high on-treatment platelet reactivity in the elderly? Res Pract Thromb Haemost. 2023;7(1):100014. DOI:10.1016/ j.rpth.2022.100014.

23. Verdoia M, Pergolini P, Rolla R, et al. Advanced age and high‐residual platelet reactivity in patients receiving dual antiplatelet therapy with clopidogrel or ticagrelor. J Thromb Haemost. 2016;14(1):57-64. DOI:10.1111/jth.13177.

24. Wang Y, Chen W, Lin Y, et al.; PRINCE Protocol Steering Group. Ticagrelor plus aspirin versus clopidogrel plus aspirin for platelet reactivity in patients with minor stroke or transient ischaemic attack: open label, blinded endpoint, randomised controlled phase II trial. BMJ. 2019;365:l2211. DOI:10.1136/bmj.l2211. Erratum in: BMJ. 2024;384:q131. doi: 10.1136/bmj.q131.

25. Dai L, Xu J, Jiang Y, Chen K. Impact of prasugrel and ticagrelor on platelet reactivity in patients with acute coronary syndrome: A meta-analysis. Front Cardiovasc Med. 2022;9:905607. DOI:10.3389/fcvm.2022.905607.

26. Bliden KP, Tantry US, Storey RF, et al. The effect of ticagrelor versus clopidogrel on high on-treatment platelet reactivity: combined analysis of the ONSET/OFFSET and RESPOND studies. American heart journal. 2011;162(1):160-5. DOI:10.1016/j.ahj.2010.11.025.

27. Komarov AL, Shakhmatova OO, Ilyushchenko TA, et al. Assessing Risk of Cardiovascular Events in Clopidogrel-Treated Patients with Stable CHD: Platelet Function or Genetic Testing? Doctor Ru. 2012;6(74):11-9. (In Russ.).

28. Sulimov VA, Moroz EV. Antiplatelet drug resistance in patients with coronary heart disease. Cardiovascular Therapy and Prevention. 2012;11(6):71-7. (In Russ.).

29. Scherf-Clavel M, Weber H, Unterecker S, et al. The relevance of integrating CYP2C19 phenoconversion effects into clinical pharmacogenetics. Pharmacopsychiatry. 2024;57(2):69-77. DOI:10.1055/a-2248-6924.

30. Knebel SM, Sprague RS, Stephenson AH. Prostacyclin receptor expression on platelets of humans with type 2 diabetes is inversely correlated with hemoglobin A1c levels. Prostaglandins Other Lipid Mediat. 2015;116-117:131-5. DOI:10.1016/j.prostaglandins.2014.12.002.

31. Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, et al. Platelet function profiles in patients with type 2 diabetes and coronary artery disease on combined aspirin and clopidogrel treatment. Diabetes. 2005;54(8):2430-5. DOI:10.2337/diabetes.54.8.2430.

32. Angiolillo DJ, Jakubowski JA, Ferreiro JL, et al. Impaired responsiveness to the platelet P2Y12 receptor antagonist clopidogrel in patients with type 2 diabetes and coronary artery disease. J Am Coll Cardiol. 2014;16(10):1005-14. DOI:10.1016/j.jacc.2014.06.1170.

33. Baber U, Chandrasekhar J, Sartori S, et al. Associations between chronic kidney disease and outcomes with use of prasugrel versus clopidogrel in patients with acute coronary syndrome undergoing percutaneous coronary intervention: a report from the PROMETHEUS study. JACC Cardiovasc Interv. 2017;10(20):2017-25. DOI:10.1016/j.jcin.2017.02.047.

34. Lau WC, Waskell LA, Watkins PB, et al. Atorvastatin reduces the ability of clopidogrel to inhibit platelet aggregation: a new drug–drug interaction. Circulation. 2003;107(1):32-7. DOI:10.1161/01.CIR.0000047060.60595.CC.


Supplementary files

Review

For citations:


Markova A.S., Mirzaev K. B. K.B., Sychev D.A., Bogova O.T., Puzin S.N., Abdullaev Sh.P., Kryukov A.V., Averkov O.V., Vechorko V.I., Akmalova K.A. The role of CYP2C19 gene nucleotide sequence variants in assessing response to P2Y12 receptor inhibitor antiplatelet therapy in old patients with acute coronary syndrome. Rational Pharmacotherapy in Cardiology. 2025;21(5):441-448. (In Russ.) https://doi.org/10.20996/1819-6446-2025-3204. EDN: XMSTCE

Views: 133

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)