SECONDARY MITOCHONDRIAL DYSFUNCTION IN ACUTE CORONARY SYNDROME
https://doi.org/10.20996/1819-6446-2007-3-1-41-47
Abstract
So-called “metabolic” direction has been developing intensively during last decades. Its aim is the theoretical and practical analysis of the role of metabolic disorders in initiation and progression of many diseases. The pathogenic peculiarities of acute coronary syndrome (ACS) which result in developing of secondary mitochondrial dysfunction are considered as a subject of this review. The methods of laboratory diagnosis of mitochondrial dysfunction and possibilities of its pharmaceutical correction in patients with ACS are reviewed.
About the Authors
Y. A. VasyukRussian Federation
Chair of clinical functional diagnostics
K. G. Kulikov
Russian Federation
Chair of clinical functional diagnostics
O. N. Kudryakov
Russian Federation
Chair of clinical functional diagnostics
O. V. Krikunova
Russian Federation
Chair of clinical functional diagnostics
I. A. Sadulaeva
Russian Federation
Chair of clinical functional diagnostics
References
1. Chinnery P. Epidemiology and treatment of mitochondrial disorders. Am.J.Med. Genet. (Semin. Med. Genet.) 106: 94-(2001)
2. Сухоруков В.С., Николаева Е.А. Нарушение клеточного энергообмена у детей. Сборник материалов. М., 2004; 4-18.
3. Ленинджер А. Основы биохимии. Под ред. В.А. Энгельгардта М. “Мир” 1985; 94-98.
4. А. Александров. Клинические горизонты кардиопротекции: "кальциевый след" триметазидина. Consilium medicum 2005;7(9):757.
5. ACC/AHA/ACP-ASIM Guidelines for the management of patients with chronic stable angina. J Am Coll Cardiol 1999; 33 (7): 2081–118.
6. Кнорре Д.Г., Мызина С.Д. Биологическая химия. М., Высшая школа 2000: 245.
7. Березов Т. Т., Коровкин Б. Ф. Биологическая химия. М., Медицина, 1998: 327.
8. Лойда З., Госсрау Р., Шиблер Т. Гистохимия ферментов, лабораторные методы. М., Мир 1982: 270.
9. Popanda O., Fox G., at all. Modulation of DNA polimerases alpha, delta and epsilon by lactate dehydrogenase and 3-phosphoglycerate kinase. Biochim.-Biophys.-Acta. 1998 Apr 1; 1397(1): 102-17;
10. Williams A. J., Coakley J. at all. Automated analysis of mitochondrial enzymes in cultured skin fibroblasts. Anal. Biochem. 1998 Jun 1; 259(2): 176-80.
11. Steapoole P. The pharmocology of dichloroacetate. Metabolism. 1989, 38: 1184-1144.
12. Gottdiener JS. Adult Clinical Cardiology Self-assessment Program 1997–1998. American College of Cardiology and the American Heart Association; 1998.
13. Bolli R. Mechanism of myocardial “stunning.” Circulation 1990;82: 723–738.
14. Toller WG, Gross ER, Kersten JR, Pagel PS, Gross GJ, Warltier DC. Sarcolemmal and mitochondrial adenosine triphosphate-dependent potassium (KATP) channels: mechanism of desflurane-induced cardioprotection. Anesthesiology 2000; 92: 180-194.
15. Przyklenk K, Kloner RA. Superoxide dismutase plus catalase improve contractile function in the canine model of the “stunned myocardium.” Circ Res. 1986; 58: 148–156.
16. Bolli R, Jeroudi MO, Patel BS, et al. Direct evidence that oxygenderived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proc Natl Acad Sci U S A. 1989; 86: 4695–4699.
17. Jeroudi MO, Triana FJ, Patel BS, et al. Effect of superoxide dismutase and catalase, given separately, on myocardial “stunning.” Am J Physiol. 1990; 259: H889–H901.
18. Gross GJ, Farber NE, Hardman HF, et al. Beneficial actions of superoxide dismutase and catalase in stunned myocardium of dogs. Am J Physiol. 1986; 250: H372–H377.
19. Bolli R, Patel BS, Jeroudi MO, et al. Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin trap alpha-phenyl N-tertiary butyl nitrone. J Clin Invest. 1988; 82: 476–485.
20. Bolli R, Jeroudi MO, Patel BS, et al. Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion: evidence that myocardial stunning" is a manifestation of reperfusion injury. Circ Res. 1989; 65: 607-622.
21. Bolli R. Causative role of oxyradicals in myocardial stunning: a proven hypothesis. Basic Res Cardiol 1998;93:156-162.
22. Sun JZ, Tang XL, Park SW, Qiu Y, Turrens JF, Bolli R. Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigs. J Clin Invest 1996; 97: 562-576.
23. Carrozza JP, Jr Bentivegna LA, Williams CP, Kuntz RE, Grossman W, Morgan JP. Decreased myofilament responsiveness in myocardial stunning follows transient calcium overload during ischemia and reperfusion. Circ Res 1992; 71: 1334-1340.
24. Task force of the European Society of Cardiology. Management of stable angina pectoris. Eur Heart J 1997; 18: 394–413.,
25. Kantor PF, Lucien A, Kozak R, Lopaschuk GD. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3- ketoacyl coenzyme A thiolase. Circ Res 2000; 86: 580–8.
26. Mody FV, Singh BN, Mohiuddin IH et al. Trimetazidine-induced enhancement of myocardial glucose utilization in normal and ischaemic myocardial tissue: an evaluation by positron emission tomography. Am J Cardiol 1998; 82: 42k–49k.
27. Lopaschuk GD, Kozak R. Trimetazidine inhibits fatty acid oxidation in the heart. J Moll Cell Cardiol 1998; 30: A112–A113
28. Lavanchy N, Martin J, Rossi A. Antiischemic effects of trimetazidine: 32P-NMR spectroscopy in the isolated rat heart. Arch Int Pharmacodyn Ther 1987; 286: 97–110.
29. Sentex E, Sergiel JP, Lucien A, Grinberg A. Trimetazidine increases phospholipid turnover in ventricular myocytes. Mol Cell Biochem 1997; 175: 153–62.
30. Cargnoni A, Pasini E, Ceconi C et al. Insight into cytoprotection with metabolic agents. Eur. Heart J. Supplements. 1999, 1: 40-48.
31. Куимов А.Д., Маянская С.Д., Лукша Е.Б. и др. Влияние терапии триметазидином на толерантность к физической нагрузке и диастолическую функцию левого желудочка сердца у больных ишемической болезнью сердца. Тер. Архив 1999; 71 (1): 39-42.
32. The EMIP–FR GROUP. Effect of 48–h intravenous trimetazidine on short– and long–term outcomes of patients with acute myocardial infarction, with and without thtombolytic therapy. Eur. Heart. J. 2000, 21: 1537-1546.
33. Di Pasquale P., Lo Verso P., Bucca V. et al. Effects of trimetazidine administration before thrombolysis in patients with anterior myocardial infarction: short-term and long-term results. J Cardiovasc Drugs Ther 1999; 13: 423-8.
34. Пархоменко А.Е., Брыль З.В., Иркин О.И. и др. Применение антиоксиданта триметазидина (предуктал) в комплексной терапии острого инфаркта миокарда. Тер. Архив 1996; 68(9): 47-52.
35. Ozdemir R., Tuncer C., Aladag M. et al. Effect of trimetazidine on late potentials after acute myocardial infarction. J Cardiovasc Drugs Ther 1999; 13: 145-9.
36. Birand A., Kudaiberdieva G.Z., Batyraliev T.A. et al. Effects of trimetazidine on heart rate variability and left ventricular systolic performance in patients with coronary artery disease after percutaneous transluminal angioplasty. Angiology 1997; 48: 413-22.
37. Ulgen M.S., Akdemir O., Toprak, N. The effects of trimetazidine on heart rate variability and signal-averaged electrocardiography in early period of acute myocardial infarction. Int J Cardiol 2001; 77: 255-62.
Review
For citations:
Vasyuk Y.A., Kulikov K.G., Kudryakov O.N., Krikunova O.V., Sadulaeva I.A. SECONDARY MITOCHONDRIAL DYSFUNCTION IN ACUTE CORONARY SYNDROME. Rational Pharmacotherapy in Cardiology. 2007;3(1):41-47. (In Russ.) https://doi.org/10.20996/1819-6446-2007-3-1-41-47