CLINICAL IMPLICATION OF FATTY ACID CHANGES IN PATIENTS WITH PRIMARY GOUT ASSOCIATED WITH ARTERIAL HYPERTENSION
https://doi.org/10.20996/1819-6446-2012-8-2-70-74
Abstract
Aim. To study blood levels of non-esterified fatty acids (NEFAs) and adenyl nucleotides, and fatty acids levels in lipids of erythrocyte membranes in patients with primary gout associated with arterial hypertension (HT). Material and methods. 175 male patients with primary gout were included in the study. According to 24-hour blood pressure (BP) monitoring results patients were split into two groups: 74 patients with normal BP (group 1) and 101 patients with HT (group 2). 29 healthy age-comparable subjects were included into control group. Uric acid, total NEFAs and glycerol blood levels were studied in all patients. Adenyl nucleotides (ATP , ADP and AMP) levels were determined in erythrocytes. Higher fatty acid levels were specified in lipids of erythrocyte membranes, including the following acids: myristinic (С14:0), palmitinic (С16:0), stearic (С18:0), pentadecanic (С15:0), heptadecanic (С17:0), pentadecenic (С15:1), heptadecenic (С17:1), palmitooleic (С16:1), oleic (С18:1), linoleic (С18:2ω6), α-linolenic (С18:3ω3), γ-linolenic (С18:3ω6), dihomo-γ-linolenic (С20:3ω6), arachidonic (С20:4ω6), eicosapentaenoic (С20:5ω3), and docosapentaenoic (С22:5ω3). Results and discussion. Hypertensive patients with gout demonstrated higher NEFAs blood level and greater changes in ATP-ADP-AMP system than normotensive gout patients and healthy subjects as well as 2.2 and 3.7 times higher NEFAs/ATP ratio, respectively. In hypertensive patients with primary gout the composition of fatty acids in erythrocyte membranes lipids changed due to increase in saturated fatty acids amount and decrease in unsaturated fatty acids amount, at that monoenic acid levels increased while polyenic acid levels decreased in unsaturated acids composition. Hypertensive patients with gout shown 1.3 and 2.5 times less levels of ω-3 poly-unsaturated fatty acids (PUFA) than normotensive gout patients and healthy subjects, respectively. At the same time ω-6 PUFA levels changed in bidirectional manner: γ-linolenic and dihomo-γ-linolenic acids levels rose, while arachidonic acid amount was 1.2 and 2.3 times less in comparison with these in gout patients with normal BP and healthy subjects. Conclusion. Study data demonstrate that fatty acid metabolic disturbances possibly contribute to HT development in patients with primary gout.
About the Authors
N. N. KushnarenkoRussian Federation
A. V. Govorin
Russian Federation
References
1. Niskanen L.K., Laaksonen D.E., Nyyssonen K. Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle–aged men: a prospective cohort study. Arch Intern Med 2004;164:1546.
2. Fang J., Alderman M. Serum uric acid and cardiovascular mortality: The NHANES I epidemiologic follow–up study , 1971–1992. National Health and Nutrition Examination Survey. JAMA 2000;238: 2404–10.
3. Sergienco I.V., Kucharchuk V.V., Gabrusenco S.A. et al. Assessment of mildronat combined therapy effect on lipid spector inflammatory factors and endothelium function in patients with ischemic heart disease. Rational Pharmacotherapy in Cardiology 2007;3(3):10–4. Russian (Сергиенко И.В., Кухарчук В.В., Г абрусенко С.А. и др. Оценка влияния комбинированной терапии милдронатом на липидный спектр, факторы воспаления и функцию эндотелия у больных ишемической болезнью. РФК 2007;3(3):10–4).
4. Tsvetkova M.V ., Khirmanov V .N., Zybina N.N. Significance of non-etherificated fatty acids in pathogenesis of cardiovascular diseases. Arterial'naya Gipertenziya 2010;16(1):93–103. Russian (Цветкова М.В., Хирманов В.Н., Зыбина Н.Н. Роль неэстерифицированных жирных кислот в патогенезе сердечно-сосудистых заболеваний. Артериальная гипертензия 2010; 16(1):93–103).
5. Govorin A.V. Non-coronarogenic myocardial damages. Novosibirsk: Nuka; 2010. Russian (Г оворин А.В. Некоронарогенные поражения миокарда. Новосибирск: Наука; 2010).
6. Titov V .N. Role of intercellular body environment in pathogenesis of clinical arterial hypertension. Rossiyskiy Kardiologicheskiy Zhurnal 2007;4(66):71–82. Russian (Титов В.Н. Значение межклеточной среды организма в патогенезе клинических форм артериальной гипертонии. Российский Кардиологический Журнал 2007;4(66):71–82).
7. Titov V.N., Dugin S.F ., Dmitriev V.A. et al. Essential polienoic fatty acids and arterial hypertension. Mechanism of physiologic influence. Klinicheskaya i Laboratornaya Diagnostika 2006;11:3–12. Russian (Титов В.Н., Дугин С.Ф., Дмитриев В.А. и др. Эссенциальные полиеновые жирные кислоты и артериальное давление. Механизмы физиологического влияния. Клиническая и Лабораторная Диагностика 2006;11:3–12).
8. Titov V.N., Krylin V.V., Shiryaeva Yu.K. Atherosclerosis prevention. Dietary excess of palmitinic acids —cause of hypercholesterolemia, inflammatory syndrome, myocite resistance to insulin and apoptosa. Klinicheskaya i Laboratornaya Diagnostika 2011;2:4–15. Russian (Титов В.Н., Крылин В.В., Ширяева Ю.К. Профилактика атеросклероза. Избыток в пище пальмитиновой кислоты — причина ги- перхолестеринемии, синдрома воспаления, резистентности миоцитов к инсулину и апоптоза. Клиническая лабораторная диагностика 2011;2:4–15).
9. Wallace S.L., Robinson H., Masi A.T. et al. Preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis Rheum 1977;20:895–900.
10. Myers M.G., Haynes R.B., Rabkin S.W. Canadian hypertension society guidelines for ambulatory blood pressure monitoring. Am J Hypert 1999;11:1149–57.
11. Prokhorov M.Yu., Tiunov M.P ., Sakalys D.A. Simple colorimetric micromethod of free fatty acid assesment. Laboratornoe Delo 1977; (9):535–6. Russian (Прохоров М.Ю., Тиунов М.П., Шакалис Д.А. Простой колориметрический микрометод определения свободных жирных кислот. Лабораторное Дело 1977;(9):535–6).
12. Yaverbaum P .M., Izdebskaya L.I. Techniques of ATF assessment in erythrocytes. Laboratornoe Delo 1986;(1):32–4. Russian (Явербаум П.М., Издебская Л.И. Методика определения АТФ в эритроцитах. Лабораторное дело 1986;(1):32–4).
13. Bergmeyer H.U. Methods of enzymatic analysis. Weinheim: Verlag Chemie; 1965.
14. Novgorodtseva T.P ., Karaman Yu. K., Antonyuk M.V. et al. The role of free and esterified fatty acids in metabolic syndrome development. Klinicheskaia Meditsina 2009;(5):33–7. Russian (Новгородцева Т .П., Караман Ю.К., Антонюк М.В. и др. Роль свободных и эстерифицированных жирных кислот при формировании метаболического синдрома. Клиническая Медицина 2009;(5):33–7).
15. Zahabi A., Deschepper C.F . Long-chain fatty acids modify hypertrophic responses of cultured primary neonatal cardiomyocytes. J Lipid Res 2001;42(8):1325–30.
16. Schumacher H.R.Jr . Crystal-induced arthritis: an overview. Am J Med 1996;100:46–52.
17. Shcherbakova O.A., Govorin A.V., Kushnarenko N.N. et al. Lipoperoxydation activity and cardiohemodynamic disorders in patients with gout. Dal'nevostochnyy meditsinskiy zhurnal 2010;(4):15–
18. Russian (Щербакова О.А., Г оворин А.В., Кушнаренко Н.Н. и др. Взаимосвязь изменений в системе «ПОЛ-АОА» и кардиогемодинамических расстройств у больных первичной подагрой. Дальневосточный медицинский журнал 2010;(4):15–8).
19. Egan B.M., Greene E.L., Goodfriend T .L. Nonesterified fat ty aids in blood pressure control and cardiovascular complications. Curr Hypertens Rep 2001;3(2):107–16.
Review
For citations:
Kushnarenko N.N., Govorin A.V. CLINICAL IMPLICATION OF FATTY ACID CHANGES IN PATIENTS WITH PRIMARY GOUT ASSOCIATED WITH ARTERIAL HYPERTENSION. Rational Pharmacotherapy in Cardiology. 2012;8(2):190-195. (In Russ.) https://doi.org/10.20996/1819-6446-2012-8-2-70-74