Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Acute Coronary Syndrome during the Pandemic New Coronavirus Infection

https://doi.org/10.20996/1819-6446-2023-01-04

Abstract

The experience of managing patients with COVID-19 around the world has shown that, although  respiratory symptoms predominate  during the manifestation of infection, then many patients can develop serious damage  to the cardiovascular system. However, coronary artery disease (CHD) remains the leading cause of death worldwide. The purpose of the review is to clarify the possible pathogenetic links between COVID-19 and acute coronary syndrome (ACS), taking into account which will help to optimize the management of patients with comorbid  pathology. Among the body's responses to SARS-CoV-2 infection, which increase the likelihood of developing  ACS,  the role of systemic inflammation, the quintessence  of which is a "cytokine storm" that can destabilize  an atherosclerotic  plaque is discussed.  Coagulopathy, typical for patients with Covid-19, is based on immunothrombosis, caused by a complex  interaction between neutrophilic  extracellular  traps and von Willebrandt  factor in conditions  of systemic inflammation. The implementation  of a modern strategy  for managing patients with ACS,  focused on the priority of percutaneous interventions (PCI), during  a pandemic is experiencing great  difficulties  due to the formation  of time delays  before  the start of invasive  procedures  due to the epidemiological situation. Despite this, the current European,  American and Russian recommendations for the management of infected patients with ACS confirm the inviolability of the position of PCI as the first choice for treating patients with ACS and the undesirability  of replacing  invasive treatment with thrombolysis.

About the Authors

O. M. Drapkina
National Research Center for Therapy and Preventive Medicine
Russian Federation

Oxana M. Drapkina.

Moscow



A. Ya. Kravchenko
Voronezh State Medical University named after N.N. Burdenko
Russian Federation

Andrey Ya. Kravchenko.

Voronezh



A. V. Budnevskiy
Voronezh State Medical University named after N.N. Burdenko
Russian Federation

Andrey V. Budnevskiy.

Voronezh



A. V. Kontsevaya
National Research Center for Therapy and Preventive Medicine
Russian Federation

Anna V. Kontsevaya.

Moscow



E. S. Ovsyannikov
Voronezh State Medical University named after N.N. Burdenko
Russian Federation

Evgeniy S. Ovsyannikov.

Voronezh



E. S. Drobysheva
Voronezh State Medical University named after N.N. Burdenko
Russian Federation

Elena S. Drobysheva.

Voronezh



References

1. COVID-19 Weekly Epidemiological Update 5 January 2021 [cited 2021 Feb 3]. Available from: www.who.int/publications/m/item/weekly-epidemiological-update---5-january-2021.

2. Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-10. DOI:10.1001/jamacardio.2020.0950.

3. Information on the mortality of the population by causes of death in the Russian Federation for January - December 2019 [cited 2021 Feb 3]. Available from: rosstat.gov.ru/free_doc/2019/demo/t3_3.xlsx.

4. Schiavone M, Gobbi C, Biondi-Zoccai G, et al. Acute Coronary Syndromes and Covid-19: Exploring the Uncertainties. J Clin Med. 2020;9(6):1683. DOI:10.3390/jcm9061683.

5. Thygesen K, Mair J, Katus H, et al. Recommendations for the use of cardiac troponin measurement in acute cardiac care. Eur Heart J. 2010;31(18):2197-204. DOI:10.1093/eurheartj/ehq251.

6. Fourth universal definition of myocardial infarction (2018). Russian Journal of Cardiology. 2019;(3):107-38 (In Russ) [Четвертое универсальное определение инфаркта миокарда (2018). Российский кардиологический журнал. 2019;24(3):107-38]. DOI:10.15829/1560-4071-2019-3-107-138.

7. Sandoval Y, Jaffe AS. Type 2 Myocardial Infarction: JACC Review Topic of the Week. J Am Coll Cardiol. 2019;73(14):1846-60. DOI:10.1016/j.jacc.2019.02.018.

8. Madjid M, Vela D, Khalili-Tabrizi H, et al. Systemic infections cause exaggerated local inflammation in atherosclerotic coronary arteries: Clues to the triggering effect of acute infections on acute coronary syndromes. Tex Heart Inst J. 2007;34(1):11-8.

9. Crea F, Liuzzo G. Pathogenesis of acute coronary syndromes. J Am Coll Cardiol. 2013;61(1):1-11. DOI:10.1016/j.jacc.2012.07.064.

10. Levi M, Van Der Poll T, Buller HR. Bidirectional relation between inflammation and coagulation. Circulation 2004;109(22):2698-704. DOI:10.1161/01.CIR.0000131660.51520.9A.

11. Barnes M, Heywood AE, Mahimbo A, et al. Acute myocardial infarction and influenza: A meta-analysis of case-control studies. Heart. 2015;101(21):1738-47. DOI:10.1136/heartjnl-2015-307691.

12. Chong PY, Chui P, Ling AE, et al. Analysis of deaths during the Severe Acute Respiratory Syndrome (SARS) epidemic in Singapore: Challenges in determining a SARS diagnosis. Arch Pathol Lab Med. 2004;128(2):195-204. DOI: 10.5858/2004-128-195-AODDTS.

13. Castro RA, Frishman WH. Thrombotic Complications of COVID-19 Infection: A Review. Cardiol Rev. 2021;29(1):43-7. DOI:10.1097/CRD.0000000000000347.

14. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033-40. DOI:10.1182/blood.2020006000.

15. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020:18(5):1023-6. DOI:10.1111/jth.14810.

16. Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis. Prog Cardiovasc Dis. 2020;63(3):390-1. DOI:10.1016/j.pcad.2020.03.001.

17. Kassina DV, Vasilenko IA, Gur’ev AS, et al. Neutrophil extracellular traps: diagnostic and prognostic value in COVID-19. Almanac of Clinical Medicine. 2020;48:43-50 (In Russ.) DOI:10.18786/2072-0505-2020-48-029.

18. Tsai HM. ADAMTS13 and microvascular thrombosis. Expert Rev Cardiovasc Ther. 2006;4(6):813-25. DOI:10.1586/14779072.4.6.813.

19. Lippi G, Sanchis-Gomar F, Favaloro EJ, et al. Coronavirus Disease 2019-Associated Coagulopathy. Mayo Clin Proc. 2021;96(1):203-17. DOI:10.1016/j.mayocp.2020.10.031.

20. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA J. Am. Med. Assoc. 2020; 323:1061-1069. DOI:10.1001/jama.2020.1585.

21. Zheng YY, Ma YT, Zhang JY, et al. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259-60. DOI:10.1038/s41569-020-0360-5.

22. Garcia S, Albaghdadi MS, Meraj PM, et al. Reduction in ST-Segment Elevation Cardiac Catheterization Laboratory Activations in the United States during COVID-19 Pandemic. J. Am. Coll. Cardiol. 2020;75(22):2871-2. DOI:10.1016/j.jacc.2020.04.011.

23. De Rosa S, Spaccarotella C, Basso C, et al. Reduction of hospitalizations for myocardial infarction in Italy in the COVID-19 era. Eur Heart J. 2020;41(22):2083-8. DOI:10.1093/eurheartj/ehaa409.

24. Jing ZC, Zhu HD, Yan XW, et al. Recommendations from the peking union medical college hospital for the management of acute myocardial infarction during the COVID-19 outbreak. Eur. Heart J. 2020;42(19):1791-4. DOI:10.1093/eurheartj/ehaa258.

25. Hu H, Ma F, Wei X, et al. Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin. Eur Heart J. 2021;42(2):206. DOI:org/10.1093/eurheartj/ehaa190.

26. Inciardi RM, Lupi L, Zaccone G, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):819-24. DOI:10.1001/jamacardio.2020.1096.

27. Mahmud E, Dauerman HL, Welt FG, et al. Management of acute myocardial infarction during the COVID-19 pandemic. J Am Coll Cardiol. 2020;76(11):1375-84. DOI:10.1016/j.jacc.2020.04.039.

28. American Heart Association’s Mission: Lifeline and Get With The Guidelines Coronary Artery Disease Advisory Work Group and the Council on Clinical Cardiology’s Committees on Acute Cardiac Care and General Cardiology and Interventional Cardiovascular Care. Temporary Emergency Guidance to STEMI Systems of Care During the COVID-19 Pandemic: AHA's Mission: Lifeline. Circulation. 2020;142(3):199-202. DOI:10.1161/CIRCULATIONAHA.120.048180.

29. Shlyakho EV, Konradi AO, Arutyunov GP, et al. Guidelines for the diagnosis and treatment of circulatory diseases in the context of the COVID-19 pandemic. Russian Journal of Cardiology. 2020;25(3):3801 (In Russ.) DOI:10.15829/1560-4071-2020-3-3801.

30. Welt FGP, Shah PB, Aronow HD, et al. Catheterization laboratory considerations during the coronavirus (COVID-19) pandemic: From the ACC's interventional council and SCAI. J Am Coll Cardiol. 2020;75(18):2372-5. DOI:org/10.1016/j.jacc.2020.03.021.

31. Schiavone M, Forleo GB, Mitacchione G, et al. Quis Custodiet Ipsos Custodes: Are we taking care of healthcare workers in the Italian Covid-19 outbreak? J Hosp Infect. 2020;105(3):580-1. DOI:10.1016/j.jhin.2020.04.045.

32. Namitokov AM, Ishevskaya OP, Fetisova VI, et al. Diagnosis and treatment of acute coronary syndrome during the novel coronavirus infection COVID-19 pandemic. Russian Journal of Cardiology. 2020;25(4):3854 (In Russ.) DOI:10.15829/1560-4071-2020-3854.

33. Duangchaemkarn K, Reisfeld B, Lohitnavy MA. Pharmacokinetic model of lopinavir in combination with ritonavir in human. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5699-5702. DOI:10.1109/EMBC.2014.6944921.

34. Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular considerations for patients, health care workers, and health systems during the coronavirus disease 2019 (COVID-19) pandemic. J Am Coll Cardiol. 2020;75(18):2352-71. DOI:10.1016/j.jacc.2020.03.031.

35. The Use of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Patients with COVID-19. [cited 2020 May 18]. Available from: https://www.who.int/news-room/commentaries/detail/the-use-of-non-steroidal-anti-inflammatory-drugs-(nsaids)-in-patients-with-covid-19.

36. Somer M, Kallio J, Pesonen U, et al. Influence of hydroxychloroquine on the bioavailability of oral metoprolol. Br J Clin Pharmacol. 2000;49(6):549-54. DOI:10.1046/j.1365-2125.2000.00197.x.

37. Zhang H, Penninger JM, Li Y, et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586-90. DOI:10.1007/s00134-020-05985-9.

38. Semenzato L, Botton J, Drouin J, et al. Antihypertensive Drugs and COVID-19 Risk: A Cohort Study of 2 Million Hypertensive Patients. Hypertension. 2021;77(3):833-42. DOI:10.1161/HYPERTENSIONAHA.120.16314.

39. Vaduganathan M, Vardeny O, Michel T, et al. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382(17):1653-9. DOI:10.1056/NEJMsr2005760.


Review

For citations:


Drapkina O.M., Kravchenko A.Ya., Budnevskiy A.V., Kontsevaya A.V., Ovsyannikov E.S., Drobysheva E.S. Acute Coronary Syndrome during the Pandemic New Coronavirus Infection. Rational Pharmacotherapy in Cardiology. 2023;19(1):65-70. (In Russ.) https://doi.org/10.20996/1819-6446-2023-01-04

Views: 531


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)