Predictive potential of the cardio-ankle vascular index in the framework of angiological screening of young people
https://doi.org/10.20996/1819-6446-2025-3219
EDN: KECIUX
Abstract
The review reflects current data on the predictive potential of vascular stiffness (VS) indicators in relation to the risk of developing various cardiovascular (CV) events by type of CV mortality, overall mortality, the development of chronic kidney disease (CKD) and cognitive impairment, the occurrence of coronary heart disease (CHD), arterial hypertension (AH) and other outcomes. Not only pulse wave velocity (PWV), but also cardio-ankle vascular index (CAVI) is considered as indicators of VS. Its technical, physiological, clinical and other advantages are shown, especially in terms of screening. Considerable experience has been gained in using this indicator both for the clinical study of vascular status in patients with obvious CV pathology and for screening at the population level. The sources devoted to the relationship between AH and increased VS in terms of the primary and secondary nature of these shifts are analyzed. The special expediency of risk assessment using CAVI in young people in comparison with the elderly population is emphasized. Clinical and preclinical scenarios are presented in which measurement of VS using the CAVI indicator can help in risk stratification at the earliest stages of development of the vascular continuum, which corresponds to young people (YP). Current data indicate that such a need arises in the presence of isolated systolic hypertension in YP, prehypertension in people without diabetes and CKD, as well as cases of normotension with the background of an unfavorable family history of CHD. The convincing results of Russian studies of vascular screening of YP aimed at increasing the accuracy of risk assessment in them, contributing to the development of more individualized preventive intervention programs already at the early stages of CV pathology. The results of such studies will make it possible to optimize existing approaches to combating CV diseases in general by improving technologies for early primary prevention.
About the Authors
M. E. EvsevyevaRussian Federation
Mariya E. Evsevyeva
Stavropol
M. V. Eremin
Russian Federation
Mikhail V. Eremin
Stavropol
O. V. Sergeeva
Russian Federation
Oksana V. Sergeeva
Stavropol
A. V. Guseva
Russian Federation
Anastasiya V. Guseva
Stavropol
E. M. Zvyagintseva
Russian Federation
Elena M. Zvyagintseva
Stavropol
V. D. Kudryavtseva
Russian Federation
Viktoriya D. Kudryavtseva
Stavropol
M. S. Kryuchkov
Russian Federation
Mikhail S. Kryuchkov
Stavropol
E. N. Fursova
Russian Federation
Elena N. Fursova
Stavropol
V. N. Mazharov
Russian Federation
Victor N. Mazharov
Stavropol
A. B. Khodzhayan
Russian Federation
Anna B. Khodzhayan
Stavropol
References
1. Budoff MJ, Alpert B, Chirinos JA, et al. Clinical Applications Measuring Arterial Stiffness: An Expert Consensus for the Application of Cardio-Ankle Vascular Index. Am J Hypertens. 2022;35(5):441-53. DOI:10.1093/ajh/hpab178.
2. Yasuharu T, Setoh K, Kawaguchi T, et al.; Nagahama study group. Brachial-ankle pulse wave velocity and cardio-ankle vascular index are associated with future cardiovascular events in a general population: The Nagahama study. J Clin Hypertens (Greenwich). 2021;23(7):1390-8. DOI:10.1111/jch.14294.
3. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318-27. DOI:10.1016/j.jacc.2009.10.061.
4. Ben-Shlomo Y, Spear M, Boustred C, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63(7):636-46. DOI:10.1016/j.jacc.2013.09.063.
5. Pase MP, Herbert A, Grima NA, et al. Arterial stiffness as a cause of cognitive decline and dementia: a systematic review and meta-analysis. Intern Med J. 2012;42(7):808-15. DOI:10.1111/j.1445-5994.2011.02645.x.
6. Townsend RR, Anderson AH, Chirinos JA, et al.; CRIC Study Investigators. Association of pulse wave velocity with chronic kidney disease progression and mortality: findings from the CRIC Study (Chronic Renal Insufficiency Cohort). Hypertension. 2018;71(6):1101-7. DOI:10.1161/HYPERTENSIONAHA.117.10648.
7. Munakata M, Konno S, Miura Y, Yoshinaga K; J-TOPP Study Group. Prognostic significance of the brachial-ankle pulse wave velocity in patients with essential hypertension: final results of the J-TOPP study. Hypertens Res. 2012;35(8):839- 42. DOI:10.1038/hr.2012.53.
8. Cruickshank K, Riste L, Anderson SG, et al. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation. 2002;106(16):2085-90. DOI:10.1161/01.cir.0000033824.02722.f7.
9. Najjar SS, Scuter A, Shetty V, et al. Pulse wave velocity is an independent predictor of the longitudinal increase in systolic blood pressure and of incident hypertension in the Baltimore Longitudinal Study of Aging. J Am Coll Cardiol. 2008;51(14):1377-83. DOI:10.1016/j.jacc.2007.10.065.
10. Kaess BM, Rong J, Larson MG, et al. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308(9):875-81. DOI:10.1001/2012.jama.10503.
11. Sutton-Tyrrell K, Najjar SS, Boudreau RM, et al.; Health ABC Study. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation. 2005;111(25):3384-90. DOI:10.1161/CIRCULATIONAHA.104.483628.
12. Maroules CD, Khera A, Ayers C, et al. Cardiovascular outcome associations among cardiovascular magnetic resonance measures of arterial stiffness: the Dallas heart study. J Cardiovasc Magn Reson. 2014;16(1):33. DOI:10.1186/1532-429X-16-33.
13. Yingchoncharoen T, Limpijankit T, Jongjirasiri S, et al. Arterial stiffness contributes to coronary artery disease risk prediction beyond the traditional risk score (RAMA-EGAT score). Heart Asia. 2012;4(1):77-82. DOI:10.1136/heartasia-2011-010079.
14. Namba T, Masaki N, Takase B, Adachi T. Arterial Stiffness Assessed by Cardio-Ankle Vascular Index. Int J Mol Sci. 2019;20(15):3664. DOI:10.3390/ijms20153664.
15. Trifonova SS, Gaisenok OV, Sidorenko BA. [Application of Methods of Assessment of Vascular Wall Stiffness in Clinical Practice: Capabilities of CardioAnkle Vascular Index]. Kardiologiia. 2015;55(4):61-6. (In Russ.) DOI:10.18565/cardio.2015.4.61-66.
16. Saiki A, Ohira M, Yamaguchi T, et al. New Horizons of Arterial Stiffness Developed Using Cardio-Ankle Vascular Index (CAVI). J Atheroscler Thromb. 2020;27(8):732-48. DOI:10.5551/jat.RV17043.
17. Miyoshi T, Ito H. Arterial stiffness in health and disease: The role of cardio-ankle vascular index. J Cardiol. 2021;78(6):493-501. DOI:10.1016/j.jjcc.2021.07.011.
18. Safronova T, Kravtsova A, Vavilov S, et al. Model-Based Assessment of the Reference Values of CAVI in Healthy Russian Population and Benchmarking With CAVI0. Am J Hypertens. 2024;37(1):77-84. DOI:10.1093/ajh/hpad082.
19. Evsevieva ME, Sergeeva OV, Kudryavtseva VD, et al. EVA syndrome and hypertension in young people according to the work of the University Health Center of the StSMU. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2023;29(5):505-17. (In Russ.) DOI:10.18705/1607-419X-2023-29-5-505-517.
20. Mattace-Raso FU, van der Cammen TJ, Hofman A, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 2006;113(5):657-63. DOI:10.1161/CIRCULATIONAHA.105.555235.
21. Matsumoto S, Nakanishi R, Luo Y, et al. The relationship between cardio-ankle vascular index and subclinical atherosclerosis evaluated by cardiac computed tomographic angiography. Clin Cardiol. 2017;40(8):549-53. DOI:10.1002/clc.22695.
22. Nakamura K, Tomaru T, Yamamura S, et al. Cardio-ankle vascular index is a candidate predictor of coronary atherosclerosis. Circ J. 2008;72(4):598-604. DOI:10.1253/circj.72.598.
23. Izuhara M, Shioji K, Kadota S, et al. Relationship of cardio-ankle vascular index (CAVI) to carotid and coronary arteriosclerosis. Circ J. 2008;72(11):1762-7. DOI:10.1253/circj.cj-08-0152.
24. Park JB, Park HE, Choi SY, et al. Relation between cardio-ankle vascular index and coronary artery calcification or stenosis in asymptomatic subjects. J Atheroscler Thromb. 2013;20(6):557-67. DOI:10.5551/jat.15149.
25. Birudaraju D, Cherukuri L, Kinninger A, et al. Relationship between cardio-ankle vascular index and obstructive coronary artery disease. Coron Artery Dis. 2020;31(6):550-5. DOI:10.1097/MCA.0000000000000872.
26. Satoh-Asahara N, Kotani K, Yamakage H, et al.; Japan Obesity and Metabolic Syndrome Study (JOMS) Group. Cardio-ankle vascular index predicts for the incidence of cardiovascular events in obese patients: a multicenter prospective cohort study (Japan Obesity and Metabolic Syndrome Study: JOMS). Atherosclerosis. 2015;242(2):461-8. DOI:10.1016/j.atherosclerosis.2015.08.003.
27. Kubota Y, Maebuchi D, Takei M. et al. Cardio-Ankle Vascular Index is a predictor of cardiovascular events. Artery Res. 2011;(5):91-6. DOI:10.1016/j.artres.2011.03.005.
28. Laucevičius A, Ryliškytė L, Balsytė J, et al. Association of cardio-ankle vascular index with cardiovascular risk factors and cardiovascular events in metabolic syndrome patients. Medicina (Kaunas). 2015;51(3):152-8. DOI:10.1016/j.medici.2015.05.001.
29. Sato Y, Nagayama D, Saiki A, et al. Cardio-Ankle Vascular Index is independently associated with future cardiovascular events in outpatients with metabolic disorders. J Atheroscler Thromb. 2016;23(5):596-605. DOI:10.5551/jat.31385
30. Chung SL, Yang CC, Chen CC, et al. Coronary artery calcium score compared with cardio-ankle vascular index in the prediction of cardiovascular events in asymptomatic patients with type 2 diabetes. J Atheroscler Thromb. 2015;22(12):1255-65. DOI:10.5551/jat.29926
31. Avolio A. Arterial stiffness. Pulse (Basel). 2013;1(1):14-28. DOI:10.1159/000348620.
32. Shirai K, Hiruta N, Song M, et al. Cardio-ankle vascular index (CAVI) as a novel indicator of arterial stiffness: theory, evidence and perspectives. J Atheroscler Thromb. 2011;18(11):924-38. DOI:10.5551/jat.7716.
33. Tanaka A, Tomiyama H, Maruhashi T, et al. Physiological Diagnosis Criteria for Vascular Failure Committee. Physiological diagnostic criteria for vascular failure. Hypertension. 2018;72(5):1060-71. DOI:10.1161/HYPERTENSIONAHA.118.11554.
34. Masugata H, Senda S, Okuyama H, et al. Comparison of central blood pressure and cardio-ankle vascular index for association with cardiac function in treated hypertensive patients. Hypertens Res. 2009;32(12):1136-42. DOI:10.1038/hr.2009.157.
35. Alghatrif M, Strait JB, Morrell CH, et al. Longitudinal trajectories of arterial stiffness and the role of blood pressure: the Baltimore Longitudinal Study of Aging. Hypertension. 2013;62(5):934-41. DOI:10.1161/HYPERTENSIONAHA.113.01445.
36. Xuereb RA, Magri CJ, Xuereb RG. Arterial Stiffness and its Impact on Cardiovascular Health. Curr Cardiol Rep. 2023;25(10):1337-49. DOI:10.1007/s11886-023-01951-1.
37. Liao D, Arnett DK, Tyroler HA, et al. Arterial stiffness and the development of hypertension The ARIC study. Hypertension. 1999;34(2):201-6. DOI:10.1161/01.hyp.34.2.201.
38. Takase H, Dohi Y, Toriyama T, et al. Brachialankle pulse wave velocity predicts increase in blood pressure and onset of hypertension. Am J Hypertens. 2011;24(6):667-73. DOI:10.1038/ajh.2011.19.
39. Dernellis J, Panaretou M. Aortic stiffness is an independent predictor of progression to hypertension in nonhypertensive subjects. Hypertension. 2005;45(3):426-31. DOI:10.1161/01.HYP.0000157818.58878.93.
40. Murray EC, Delles C, Orzechowski P, et al. Vascular phenotypes in early hypertension. J Hum Hypertens. 2023;37(10):898-906. DOI:10.1038/s41371-022-00794-7.
41. Mitchell GF, Hwang SJ, Vasan RS, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121(4):505-11. DOI:10.1161/CIRCULATIONAHA.109.886655.
42. Nilsson PM. Early Vascular Aging in Hypertension. Front Cardiovasc Med. 2020;7:6. DOI:10.3389/fcvm.2020.00006.
43. Rizzoni D, Agabiti-Rosei E. Structural abnormalities of small resistance arteries in essential hypertension. Intern Emerg Med. 2012;7(3):205-12. DOI:10.1007/s11739-011-0548-0.
44. Kim HL. Arterial stiffness and hypertension. Clin Hypertens. 2023;29(1):31. DOI:10.1186/s40885-023-00258-1.
45. Renna NF, de Las HN, Miatello RM. Pathophysiology of vascular remodeling in hypertension. Int J Hypertens. 2013;2013:808353. DOI:10.1155/2013/808353.
46. Qiu H, Zhu Y, Sun Z, et al. Short communication: vascular smooth muscle cell stiffness as a mechanism for increased aortic stiffness with aging. Circ Res. 2010;107(5):615-9. DOI:10.1161/CIRCRESAHA.110.221846.
47. Martinez-Lemus LA, Hill MA, Meininger GA. The plastic nature of the vascular wall: a continuum of remodeling events contributing to control of arteriolar diameter and structure. Physiology (Bethesda). 2009;24:45-57. DOI:10.1152/physiol.00029.2008.
48. Matsushita K, Ding N, Kim ED, et al. Cardio-ankle vascular index and cardiovascular disease: Systematic review and meta-analysis of prospective and cross-sectional studies. J Clin Hypertens (Greenwich). 2019;21(1):16-24. DOI:10.1111/jch.13425.
49. Harary D, Akinyemi A, Charron MJ, et al. Fetal Growth and Intrauterine Epigenetic Programming of Obesity and Cardiometabolic Disease. Neoreviews. 2022;23(6):e363-72. DOI:10.1542/neo.23-6-e363.
50. Tain YL, Hsu CN. Interplay between maternal nutrition and epigenetic programming on offspring hypertension. J Nutr Biochem. 2024;127:109604. DOI:10.1016/j.jnutbio.2024.109604.
51. Lurbe E, Ingelfinger J. Developmental and Early Life Origins of Cardiometabolic Risk Factors: Novel Findings and Implications. Hypertension. 2021;77(2):308-18. DOI:10.1161/HYPERTENSIONAHA.120.14592.
52. Liang J, Xu C, Liu Q, et al. Association between birth weight and risk of cardiovascular disease: Evidence from UK Biobank. Nutr Metab Cardiovasc Dis. 2021;31(9):2637-43. DOI:10.1016/j.numecd.2021.05.017.
53. Evsevieva M, Sergeeva O, Mazurakova A, et al. Рre-pregnancy check-up of maternal vascular status and associated phenotype is crucial for the health of mother and offspring. EPMA J. 2022;13(3):351-66. DOI:10.1007/s13167-022-00294-1.
54. Laurent S, Boutouyrie P, Cunha P, et al. Concept of extremes in vascular aging from early vascular aging to supernormal vascular aging. Hypertension. 2019;74(2):218-28. DOI:10.1161/HYPERTENSIONAHA.119.12655.
55. Nilsson Wadström B, Engström G, Nilsson P. Exploring and comparing definitions of healthy vascular ageing in the population: characteristics and prospective cardiovascular risk. J Hum Hypertens. 2021;35(5):428-36. DOI:10.1038/s41371-020-0353-1.
56. Sumin AN, Shcheglova AV. Assessment of Arterial Stiffness Using the CardioAnkle Vascular Index — What We Know and What We Strive for. Rational Pharmacotherapy in Cardiology 2021;17(4):619-67. (In Russ.) DOI:10.20996/1819-6446-2021-08-09.
57. Podzolkov VI, Bragina AE, Druzhinina NA, Mohammadi LN. E-cigarette Smoking (Vaping) and Markers of Vascular Wall Damage in Young Subjects without Cardiovascular Disease. Rational Pharmacotherapy in Cardiology. 2021;17(4):521-7. (In Russ.) . DOI:10.20996/1819-6446-2021-08-04.
58. Milyagin VA, Lexina YuN, Milyagina IV. Determination of early vascular remodeling (aging). The Russian Archives of Internal Medicine. 2012;(2):46-50. (In Russ.) DOI:10.20514/2226-6704-2012-0-2-46-50.
59. Rotar OP, Boiarinova MA, Tolkunova KM, et al. Vascular aging phenotypes in Russian population — biological, social, and behavioral determinants. Cardiovascular Therapy and Prevention. 2021;20(5):2970. (In Russ.) DOI:10.15829/1728-8800-2021-2970.
60. Evsevyeva ME, Eremin MV, Rostovtseva MV, et al. Vascular aging phenotypes based on VaSerа-screening results in young people with hypertension: Place of connective tissue dysplasia. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2021;27(2):188-205. (In Russ.) DOI:10.18705/1607-419X-2021-27-2-188-205.
61. Sumin AN, Bezdenezhnykh NA, Fedorova NV, et al. The values of cardio-ankle vascular and ankle-brachial indices in patients with carbohydrate metabolic disorders: The ESSE-RF study in the Kemerovo Region. Therapeutic Archive. 2016; 88(12):1120. (In Russ.) DOI:10.17116/terarkh2016881211-20.
62. Sumin AN, Bezdenezhnykh NA, Fedorova NV et al. The relationship of visceral obesity and cardio-ankle vascular index with impaired glucose metabolism according to the ESSE_RF study in west siberian region. Clinical Medicine. 2018;96(2):137-46. (In Russ.) DOI:10.18821/0023-2149-2018-96-2-137-146.
63. Evseveva ME, Eremin MV, Rostovtseva MV, et al. Phenotypes of early and favorable vascular aging in young people depending on the risk factors and presence of connective tissue dysplasia. Cardiovascular Therapy and Prevention. 2020;19(6):2524. (In Russ.) DOI:10.15829/1728-8800-2020-2524.
64. Eremin MV, Simkhes EV, Evsev’eva ME, Koshel’ IV. Tonsillar problem and its cardiovascular aspects at the present stage. Russian Otorhinolaryngology. 2023;22(6):39-45. (In Russ.) DOI:10.18692/1810-4800-2023-6-39-45.
65. Evsevyeva MЕ, Eremin MV, Italyantseva EV, et al. Vascular stiffness, central pressure and some indicators of myocardial function in the presence of decompensated chronic tonsillitis. Medical News of North Caucasus. 2020;15(2):229- 33. (In Russ.) DOI:10.14300/mnnc.2020.15054.
66. Akatova EV, Arutyunov GP, Baranov AA, et al. Clinical recommendations. Undifferentiated connective tissue dysplasia. Therapy. 2024;10(S5):1-43. (In Russ.) DOI:10.18565/therapy.2024.5suppl.1-43.
67. Hereditary connective tissue disorders in cardiology. Diagnosis and treatment. Russian recommendations. Russian Journal of Cardiology. 2013;18(1):1-32. (In Russ.) DOI:10.15829/1560-4071-2013-1s1-5-32.
68. Evsevyeva ME, Eremin MV, Sergeeva OV, et al. Prospective analysis of the major risk factors and vascular status in students during the period of education at a medical university. Russian Journal of Cardiology. 2023;28(2):5143. (In Russ.) DOI:10.15829/1560-4071-2023-5143.
69. Evsevieva ME, Sergeeva OV, Rusidi AV, et al. Youth obesity paradox from the perspective of vascular stiffness, blood pressure and metabolic status. Russian Journal of Cardiology. 2024;29(5):5739. (In Russ.) DOI:10.15829/1560-4071-2024-5739.
70. Strazhesko ID, Tkacheva ON, Akasheva DU, et al. Correlations of different structural and functional characteristics of arterial wall with traditional cardiovascular risk factors in healthy people of different age. Part 2. Rational Pharmacotherapy in Cardiology. 2016;12(3):244-52. (In Russ.) DOI:10.20996/1819-6446-2016-12-3-244-252.
71. Chiesa ST, Charakida M, Deanfield JE. Adolescent health and future cardiovascular disability: it’s never too early to think about prevention. Eur Heart J. 2020;41(15):1511-3. DOI:10.1093/eurheartj/ehz869.
72. Evsevyeva ME, Sergeeva OV, Simkhes EV, et al. Risk factor profile and vascular stiffness in young people living in the North Caucasian Federal District according to remote survey and angiology screening. Russian Journal of Preventive Medicine. 2023;26(2):8693. (In Russ.) DOI:10.17116/profmed20232602186.
73. Evsevieva ME, Sergeeva OV, Eremin MV, et al. Early vascular aging in young adults is instrumental as the screening tool to combat CVD epidemics in the population. In: Wang editor. All Around Suboptimal Health.Advanced Approaches by Predictive, Preventive and Personalised Medicine for Healthy Populations. Cham, Springer; 2024; pр. 139-70. DOI:10.1007/978-3-031-46891-9_12.
74. Nowak KL, Rossman MJ, Chonchol M, Seals DR. Strategies for Achieving Healthy Vascular Aging. Hypertension. 2018;71(3):389-402. DOI:10.1161/HYPERTENSIONAHA.117.10439.
75. Li A, Yan J, Zhao Y, et al. Vascular Aging: Assessment and Intervention. Clin Interv Aging. 2023;18:1373-95. DOI:10.2147/CIA.S423373.
76. Evsevyeva ME, Sergeeva OV, Rusidi AV, et al. The vascular aging and the formation of sanogenic thinking in students in the aspect of the youth healthcare system optimizing. Russian Journal of Preventive Medicine. 2024;27(9):7581. (In Russ.) DOI:10.17116/profmed20242709175.
77. Chiesa ST, Charakida M, Georgiopoulos G, et al. Determinants of IntimaMedia Thickness in the Young: The ALSPAC Study. JACC Cardiovasc Imaging. 2021;14(2):468-78. DOI:10.1016/j.jcmg.2019.08.026.
Supplementary files
Review
For citations:
Evsevyeva M.E., Eremin M.V., Sergeeva O.V., Guseva A.V., Zvyagintseva E.M., Kudryavtseva V.D., Kryuchkov M.S., Fursova E.N., Mazharov V.N., Khodzhayan A.B. Predictive potential of the cardio-ankle vascular index in the framework of angiological screening of young people. Rational Pharmacotherapy in Cardiology. 2025;21(4):387-395. (In Russ.) https://doi.org/10.20996/1819-6446-2025-3219. EDN: KECIUX







































