Replenishment of intracellular magnesium deficiency in cardiac arrhythmias: focus on the physicochemical properties of complex compounds
https://doi.org/10.20996/1819-6446-2025-3149
EDN: NZEGLS
Abstract
Aim. To identify the most promising drug composition for replenishing intracellular magnesium deficiency by eveluating the physicochemical properties of magnesium complex compounds and conducting experiments on isolated rat atrial cardiomyocytes.
Materials and methods. The study assessed the osmolality of solutions containing magnesium complex compounds, their extraction into organic solvents of different polarity (chloroform and butanol), and diffusion through a cell membrane model (lecithin-modified paper filter). In experiments on isolated rat atrial cardiomyocytes, the compositions were tested for replenishment of intracellular (cytosolic) magnesium deficiency using laser scanning (confocal) microscopy.
Results. Based on physicochemical testing of magnesium preparations and experiments conducted on cardiomyocytes of laboratory animals, the most promising system for replenishing intracellular magnesium was a system based on magnesium aspartate, in which the ratio of magnesium ions to aspartic acid is 1 to 2.5. Thirty-minute incubation with this preparation led to increased cytosolic [Mg2+]i by 115% compared to control. Removal of excess potassium ions from the potassium aspartate and magnesium system shifted pH toward a more physiological range (from 6.8 to 7.3), while the lipophilic properties (organic solvent extraction and lecithin filter diffusion) doubled.
Conclusion. The paper presents a methodological approach for analyzing of magnesium complex compounds for replenishing its intracellular deficiency, emphasizing complex type, concentration, lipophilicity, and original system osmolality. Experimental findings were confirmed in a translational experiment with isolated atrial cardiomyocytes, which allows us to identify the most promising complex in relation to replenishing intracellular magnesium deficiency.
About the Authors
Ya. G. BozhkoRussian Federation
Yakov G. Bozhko
Yekaterinburg
N. A. Belokonova
Russian Federation
Nadezhdа А. Belokonova
Yekaterinburg
O. M. Medvedeva
Russian Federation
Olga M. Medvedeva
Yekaterinburg
K. A. Butova
Russian Federation
Kseniya A. Butova
Yekaterinburg
M. V. Arkhipov
Russian Federation
Mikhail V. Arkhipov
Yekaterinburg
References
1. Jahnen-Dechent W, Ketteler M. Magnesium basics. Clin Kidney J. 2012;5(Suppl 1): i3-i14. DOI:10.1093/ndtplus/sfr163.
2. Maguire ME, Cowan JA. Magnesium chemistry and biochemistry. Biometals. 2002;15(3):203-10. DOI:10.1023/a:1016058229972.
3. Swaminathan R. Magnesium metabolism and its disorders. Clin Biochem Rev. 2003:24(2):47-66.
4. de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Physiol Rev. 2015;95(1):1-46. DOI:10.1152/physrev.00012.2014.
5. Khan AM, Lubitz SA, Sullivan LM, et al. Low serum magnesium and the development of atrial fibrillation in the community: the Framingham Heart Study. Circulation. 2013;127(1):33-8. DOI:10.1161/CIRCULATIONAHA.111.082511.
6. Misialek JR, Lopez FL, Lutsey PL, et al. Serum and dietary magnesium and incidence of atrial fibrillation in whites and in African Americans-Atherosclerosis Risk in Communities (ARIC) study. Circ J. 2013;77(2):323-9. DOI:10.1253/circj.cj12-0886.
7. Bozhko YG, Arhipov MV, Belokonova NA, Kiseleva DV. Clinical and methodological aspects in the diagnosis of magnesium deficiency in patients with paroxysmal atrial fibrillation. Kazanskij medicinskij zhurnal. 2019;100(2):197-203. (In Russ.) DOI:10.17816/KMJ2019-197.
8. Bozhko YG, Arhipov MV, Belokonova NA. Study of the Effect of Proton Pump Inhibitors on the Development of Hypomagnesemia in Patients with Paroxysmal Atrial Fibrillation on the Background of Autonomic Sinus Node Dysfunction. Rational Pharmacotherapy in Cardiology. 2019;15(6):840-6. (In Russ.) DOI:10.20996/1819-6446-2019-15-6-840-846.
9. Belokonova NА, Medvedeva OM, Bozhko YG, Arhipov MV. Physicochemical properties of magnesium drugs Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2024;(1):5-13. (In Russ.)
10. Iezhica IN, Kravchenko MS, Haritonova MV, et al. Comparative bioavailability of organic magnesium salts in rats fed with magnesium-deficient diet. Journal of Volgograd State Medical University. 2007;(4):39-41. (In Russ.)
11. Belokonova NA, Ermishina EJu, Naronova NA, Borodulina TV. Diffusion of the mineral composition of infant formula through a semipermeable membrane in comparison with breast milk and a model solution. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya. 2018;8(1):115-21. (In Russ.)
12. Butova XA, Myachina TA, Khokhlova AD. A combined Langendorff-injection technique for simultaneous isolation of single cardiomyocytes from atria and ventricles of the rat heart. Methods X. 2020;8:101189. DOI:10.1016/j.mex.2020.101189.
13. Popkov VA, Puzakov SA. General chemistry. GEOTAR-Media; 2009. (In Russ.)
14. Case DR, Zubieta J, P Doyle R. The Coordination Chemistry of Bio-Relevant Ligands and Their Magnesium Complexes. Molecules. 2020;25(14):3172. DOI:10.3390/molecules25143172.
15. Duchatelle-Gourdon I, Hartzell HC, Lagrutta AA. Modulation of the delayed rectifier potassium current in frog cardiomyocytes by beta-adrenergic agonists and magnesium. J Physiol. 1989;415:251-74. DOI:10.1113/jphysiol.1989.sp017721.
16. Yogi A, Callera GE, Tostes R, et al. Bradykinin regulates calpain and proinflammatory signaling through TRPM7-sensitive pathways in vascular smooth muscle cells. Am J Physiol Regul Integr Comp Physiol. 2009;296(2): R201-7. DOI:10.1152/ajpregu.90602.2008.
17. Gu WJ, Wu ZJ, Wang PF, et al. Intravenous magnesium prevents atrial fibrillation after coronary artery bypass grafting: a meta-analysis of 7 doubleblind, placebo-controlled, randomized clinical trials. Trials. 2012;13:41. DOI:10.1186/1745-6215-13-41.
18. Kalus JS, Spencer AP, Tsikouris JP, et al. Impact of prophylactic i.v. magnesium on the efficacy of ibutilide for conversion of atrial fibrillation or flutter. Am J Health Syst Pharm. 2003;60(22):2308-12. DOI:10.1093/ajhp/60.22.2308.
19. Coleman CI, Sood N, Chawla D, et al; Dofetilide and Intravenous Magnesium Evaluation (DIME) Investigators. Intravenous Magnesium Evaluation (DIME) Investigators. Intravenous magnesium sulfate enhances the ability of dofetilide to successfully cardiovert atrial fibrillation or flutter: results of the Dofetilide and Intravenous Magnesium Evaluation. Europace. 2009;11(7):892-5. DOI:10.1093/europace/eup084.
20. Markovits N, Kurnik D, Halkin H, et al. Database evaluation of the association between serum magnesium levels and the risk of atrial fibrillation in the community. Int J Cardiol. 2016;205:142-6. DOI:10.1016/j.ijcard.2015.12.014.
21. Bouida W, Beltaief K, Msolli MA, et al. Low-dose Magnesium Sulfate Versus High Dose in the Early Management of Rapid Atrial Fibrillation: Randomized Controlled Double-blind Study (LOMAGHI Study). Acad Emerg Med. 2019;26(2):183-91. DOI:10.1111/acem.13522.
22. Hoshino K, Ogawa K, Hishitani T, et al. Successful uses of magnesium sulfate for torsades de pointes in children with long QT syndrome. Pediatr Int. 2006;48(2):112-7. DOI:10.1111/j.1442-200X.2006.02177.x.
Review
For citations:
Bozhko Ya.G., Belokonova N.A., Medvedeva O.M., Butova K.A., Arkhipov M.V. Replenishment of intracellular magnesium deficiency in cardiac arrhythmias: focus on the physicochemical properties of complex compounds. Rational Pharmacotherapy in Cardiology. 2025;21(2):155-165. (In Russ.) https://doi.org/10.20996/1819-6446-2025-3149. EDN: NZEGLS